General Relativity (1916)

- General theory of relativity
- An extension of "special theory of relativity", which did not include gravity but dealt only with "inertial motion" (i.e., motion with constant velocity)
- How do we deal with gravitational force?
- Equivalence Principle
- Equivalence principle states that "inertial force and gravitational force are the same thing."
- Or, "acceleration and gravity are the same thing."
- Flat spacetime to curved spacetime
- Gravity causes geometry of spacetime to be curved.

Acceleration = Gravity

- Newton's $2^{\text {nd }}$ law of motion
$-F=m a$
- Gravitational force $=m g$
$-m a=m g$
- Therefore, $a=g$, for a freely falling body
- But, wait. What do we mean by mass?
- Mass could be measured by its acceleration, given the inertial force
- Mass could be measured by its weight (or gravitational force)
- But, who said these two "masses" are the same thing?

Equivalence Principle

- Let's imagine that you are in an elevator.
- What happens when the elevator begins to go up?
- What happens when the elevator begins to go down?
- What happens when the elevator moves at constant speed?
- What would happen when the wire hanging the elevator is cut?
- Let's imagine that you are an astronaut on board a space station.
- Why do you think you are a weightless?
- What would you do to make "gravity" in flight?

Inertial Mass $=$ Gravitational Mass

- Maybe there are two distinctive definitions of "mass".
- Inertial mass, $m_{\text {inertial }}$, may be defined by
- Inertial force $=m_{\text {inertial }} a$
- Gravitational mass, $m_{\text {gravity }}$, may be defined by
- Gravitational force $=m_{\text {gravity }} g$
- Then, Newton's equation becomes
$-m_{\text {inertial }} a=m_{\text {gravity }} g$
- Now, let's drop two balls with different weights (different $m_{\text {gravity }}$) from the roof of RLM and see which one reaches the ground first.
- (Ignoring friction by air) both balls will reach the ground at the same time. This must imply that $m_{\text {inertial }}=m_{\text {gravity }}$
- Acceleration would be different for two balls, otherwise!

Is it surprising?

- It's surprising because equivalence principle then states that gravity can be canceled, or mimicked, by acceleration.
- Case 1: Free-fall (gravity canceled)
- Case 2: Constant acceleration (gravity mimicked)
- When gravity is canceled by acceleration, one can still use special relativity.
- Free-falling frame and inertial frame are totally equivalent.

A way to sense "gravity"

- When gravity is uniform (g is constant everywhere), its effect can be canceled by a uniform acceleration precisely.
- However, if gravity is non-uniform (which is always true), then there will be a tidal force
- Case 1: g on Earth depends on altitude
- Case 2: g in the Solar System depends on distance from the Sun
- Case 3: g on Earth by Moon depends on locations on Earth (cause of tides)
- Let's imagine two balls falling into the center of Earth. What happens?

Spacetime curvature and Gravity

- Gravity is now described by curvature of spacetime
- Spacetime is curved by the presence of energy
- Flat spacetime is equivalent to "zero gravity" = "zero curvature"

Shortest Paths (Geodesics)

- The shortest paths, geodesics, may look "curved", but these are the "straight" lines in curved geometry.

Strength of Gravity

- How do we quantify the strength of gravity of an object?
- How much is the spacetime around an object curved?
- Gravity is stronger when mass is larger
- Gravity is stronger when distance is shorter
- Escape velocity
- Kinetic energy $=$ Gravitational potential energy
$-(1 / 2) m v^{2}=G M m / R \rightarrow v^{2}=2 G M / R$
- E.g., Sun's gravity: $42 \mathrm{~km} / \mathrm{s}$, Earth's gravity: $11 \mathrm{~km} / \mathrm{s}$

Perihelion Shift

Note: The amount of precession with each
orbit is highly exaggerated in this picture.

- Mercury's perihelion was measured to be shifting over years
- Subtracting precession of perihelion due to gravity from other planets remains the shift of 43 arc-second per century
- General Relativity accounts for this naturally: perihelion shift $=(v / c)^{2}$ radians per revolution
$-v$ is the escape velocity from the Sun's gravity at Mercury's orbit.

Gravitational Lensing

to Earth

- Deflection of light $=2(\mathrm{v} / \mathrm{c})^{2}$ radians
- The Sun will deflect light by 1.75 arc-seconds
- Measured by Authur Eddington during solar eclipse in 1919.

Gravitational Redshift

- As light escapes from gravitational potential, it loses energy.
- Light with smaller energy has a longer wavelength \rightarrow Color of light gets redder: Redshift
- 1+Redshift
= Wavelength received/Original Wavelength
- When gravity is weak $(\mathrm{v} / \mathrm{c}<1)$, gravitational redshift is - Gravitational Redshift $\sim(1 / 2)(v / c)^{2}$
- This result can also be interpreted as "gravitational time dilation"
- $1+$ Redshift $=$ Time dilation
- When redshift ~ 0.1 (rather strong gravity!), clock ticks more slowly by 10%

Gravitational Radiation

- Newtonian gravity propagates instantly.
- This is in conflict with relativity: nothing can travel faster than light.
- Distortion in spacetime propagates at the speed of light, just like waves in ocean!
- Distortion propagates as waves (or ripples), just like waves of light
- Particle-wave duality: There are gravitons, which propagate through spacetime at the speed of light, exchanging gravitational force.

Example: Neutron Star Binary

- As neutron stars orbit each other, spacetime is distorted periodically.
- Angular momentum is lost as gravitational radiation is emitted.
- This effect has been observed!

