Four Dimensions

- Space (Cartesian) coordinate : (x,y,z)
- Distance $^{2}=(x \text { interval) })^{2}+(y \text { interval })^{2}+(z \text { interval })^{2}$
- Fourth dimension is time
- More general coordinate $=$ spacetime : $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$
- (Spacetime distance) ${ }^{2}$
$\left.=c^{2}(\boldsymbol{t} \text { interval })^{2}-\left[(\boldsymbol{x} \text { interval })^{2+(y} \text { interval }\right)^{2}+(\boldsymbol{z} \text { interval })^{2}\right]$
- Spacetime Diagram
- "Events" connected by "Worldlines"

Spacetime Distances

(Spacetime distance) ${ }^{2}$
$=c^{2}(\text { time interval })^{2}-(\text { space interval })^{2}$

1. "Timelike" worldline : (Spacetime distance) ${ }^{2}>0$

OC 2. "Null" worldline
$:(\text { Spacetime distance })^{2}=0$
OB
3. "Spacelike" worldline : (Spacetime distance) ${ }^{2}<0$

Velocity and Light cone
cTime ${ }^{4}$

- The steeper the slope is, the smaller the velocity is.
- The lines with 45 degrees tilt represent the "light cone"
- Since nothing can travel faster than light..
- O and A can communicate, but O and B cannot communicate
- This diagram shows a "causal structure"

Acceleration and Deceleration

- OA : Decelerated
- OB : Constant velocity
- OC : Accelerated

Special Relativity (1905)

- Two Invariants
- Speed of light, c
- Spacetime distance $\left(d s^{2}=c^{2} d t^{2}-d x^{2}\right)$
- Unification of space and time
- No absolute space or time exists: Relativity
- Special relativity does not include gravity

Albert Einstein (1879-

Time Dilation and Length Contraction

- When A sees B moving, B's time interval appears to be longer (clock ticks more slowly; time dilation) ed and B's length appears to be shorter (length contraction). And vice versa.

Relativity of Space and Time

B's point of view

- A's space coordinate, \boldsymbol{x}, does not coincide with B's, x^{\prime}. Rather, \boldsymbol{x} is a combination of x^{\prime} and $c t^{\prime}$.
- The same is true for time coordinate.
- This means that simultaneous events in A's coordinate would not appear simultaneous in B's coordinate.
- But, spacetime distance remains unchanged.

Intuitive way to

 understand it- From your point of view, the ball appears to move faster; however, light cannot travel faster!
- Therefore, it must take light more time to come back down to the laser
- Time Dilation

Relativistic Gamma Factor

- γ is always greater than 1 .
- As v approaches c, γ becomes large.
-When $v=c, \gamma$ is infinite.
- B's unit time in A's frame equals A's unit time in A's frame multiplied by γ. (Hence time dilation)
- Be careful! The time actually elapsed in B's frame gets shorter because the unit time gets longer.
- B's unit length in A's frame equals B's unit length in B's frame divided by γ. (Hence length contraction)

Mass Increase

- A pushes B (whose mass at rest is m) by applying a force F.
- Acceleration is given by $a=F / m$.
- Velocity acquired would be $v=a d t=F d t / m$
- When B is moving, the clock ticks more slowly
- B feels the force for a shorter time
$-v^{\prime}=a d t^{\prime}=F d t^{\prime} / m=F d t /(m \gamma)$
- Thus, the mass of B appears to be bigger by γ.
- Nothing can be accelerated to the speed of light, because the mass becomes infinite.

Twin Paradox

- There are twins, A and B
- B moves relative to A
- A's point of view
- B is moving at speed v
- B's clock ticks more slowly by γ.
- Therefore, B appears to be aging more slowly.
- B's point of view
- A is moving at speed v
- A's clock ticks more slowly by γ.
- Therefore, A appears to be aging more slowly.
- So, which one is older, when they meet?
- Twin Paradox

Case 1

- A and B are at rest at the same place

until event 1.
- Then A and B go on a trip on opposite directions.
- A and B turn around and come back at events 2 .
- A and B finally meet at event 3 .
- In this case, A's and B's worldlines are symmetric.
- A and B have traveled the same spacetime distance.
- Therefore, A and B have aged the same years.

Case 2 (a different point of view)

- In C's frame, A is moving to the left at all times. B is initially moving to the left, together with A .
- B becomes at rest at event 1 , and then moves to the left faster than before.
- A and B meet at event 3 .
- In this case, A's and B's worldlines are still not symmetric!
- A has aged more than B.
- B's spacetime distance is still shorter.

Case 2

Original Frame

- A remains at rest at all times.
- B leaves home at event 1 , turns around at event 2, and finally meets A at event 3 .
- In this case, A's and B's worldlines are not symmetric!
- What happens?
- The answer is that A has aged more than B.
- Why?
- B's spacetime distance is shorter than A's
- Remember, $d s^{2}=c^{2} d t^{2}-d x^{2}$

So, what was it?

- Motion of A and B remains completely relative only when both are moving at constant velocity.
- Motion has to be inertial for two frames to be completely equivalent.
- However, for two people to know their initial ages and then meet later again, the motion cannot stay inertial \rightarrow two frames are no longer equivalent.

