Four Dimensions

- Space (Cartesian) coordinate: \((x,y,z)\)
 - Distance\(^2 = (x \text{ interval})^2 + (y \text{ interval})^2 + (z \text{ interval})^2\)
- Fourth dimension is **time**
 - More general coordinate = **spacetime**: \((x,y,z,t)\)
 - \((\text{Spacetime distance})^2\)
 \[= c^2(t \text{ interval})^2 - [(x \text{ interval})^2 + (y \text{ interval})^2 + (z \text{ interval})^2]\]
- **Spacetime Diagram**
 - “Events” connected by “Worldlines”

Spacetime Distances

\[(\text{Spacetime distance})^2 = c^2(t \text{ interval})^2 - (x \text{ interval})^2 - (y \text{ interval})^2 - (z \text{ interval})^2\]

Velocity and Light cone

- The steeper the slope is, the smaller the velocity is.
- The lines with 45 degrees tilt represent the “light cone”
- Since nothing can travel faster than light…
 - O and A can communicate, but O and B cannot communicate
 - This diagram shows a “causal structure”

Acceleration and Deceleration

- OA: Decelerated
- OB: Constant velocity
- OC: Accelerated
Special Relativity (1905)

- Two Invariants
 - Speed of light, \(c \)
 - Spacetime distance \((ds^2 = c^2 dt^2 - dx^2) \)
- Unification of space and time
 - No absolute space or time exists: Relativity
- Special relativity does not include gravity

Relativity of Space and Time

- A’s space coordinate, \(x \), does not coincide with B’s, \(x' \). Rather, \(x \) is a combination of \(x' \) and \(ct' \).
- The same is true for time coordinate.
 - This means that simultaneous events in A’s coordinate would not appear simultaneous in B’s coordinate.
- But, spacetime distance remains unchanged.

Time Dilation and Length Contraction

- When A sees B moving, B’s time interval appears to be longer (clock ticks more slowly; time dilation) and B’s length appears to be shorter (length contraction). And vice versa.

Intuitive way to understand it

- From your point of view, the ball appears to move faster; however, light cannot travel faster!
- Therefore, it must take light more time to come back down to the laser – Time Dilation
Relativistic Gamma Factor

\[\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \]

- \(\gamma \) is always greater than 1.
- As \(v \) approaches \(c \), \(\gamma \) becomes large.
- When \(v = c \), \(\gamma \) is infinite.

- B’s unit time in A’s frame equals A’s unit time in A’s frame multiplied by \(\gamma \). (Hence time dilation)
 - Be careful! The time actually elapsed in B’s frame gets shorter because the unit time gets longer.
- B’s unit length in A’s frame equals B’s unit length in B’s frame divided by \(\gamma \). (Hence length contraction)

Mass Increase

- A pushes B (whose mass at rest is \(m \)) by applying a force \(F \).
 - Acceleration is given by \(a = F/m \).
 - Velocity acquired would be \(v = a \ dt = F \ dt / m \).
- When B is moving, the clock ticks more slowly
 - B feels the force for a shorter time
 - \(v' = a \ dt' = F \ dt' / m = F \ dt / (m \gamma) \)
- Thus, the mass of B appears to be bigger by \(\gamma \).
- Nothing can be accelerated to the speed of light, because the mass becomes infinite.

Twin Paradox

- There are twins, A and B
- B moves relative to A
 - A’s point of view
 - B is moving at speed \(v \)
 - B’s clock ticks more slowly by \(\gamma \).
 - Therefore, B appears to be aging more slowly.
 - B’s point of view
 - A is moving at speed \(v \)
 - A’s clock ticks more slowly by \(\gamma \).
 - Therefore, A appears to be aging more slowly.
- So, which one is older, when they meet?
 - Twin Paradox

Case 1

- A and B are at rest at the same place until event 1.
- Then A and B go on a trip on opposite directions.
- A and B turn around and come back at events 2.
- A and B finally meet at event 3.
- In this case, A’s and B’s worldlines are symmetric.
- A and B have traveled the same spacetime distance.
 - Therefore, A and B have aged the same years.
Case 1 (a different point of view)

- C’s point of view
 - C is moving to the left with respect to the original frame
- A and B are moving to the right together until event 1.
- Then A is at rest but B speeds up.
- A turns around earlier than B.
 - Then B is at rest but A moves to the right faster than before
- A and B finally meet at event 3.
- In this case, A’s and B’s worldlines are still symmetric.
 - A and B have traveled the same spacetime distance; thus, A and B have aged the same years.

Case 2

- A remains at rest at all times.
- B leaves home at event 1, turns around at event 2, and finally meets A at event 3.
- In this case, A’s and B’s worldlines are not symmetric!
- What happens?
 - The answer is that A has aged more than B.
- Why?
 - B’s spacetime distance is shorter than A’s
 - Remember, \(ds^2 = c^2 dt^2 - dx^2 \)

So, what was it?

- Motion of A and B remains completely relative only when both are moving at constant velocity.
 - Motion has to be inertial for two frames to be completely equivalent.
- However, for two people to know their initial ages and then meet later again, the motion cannot stay inertial → two frames are no longer equivalent.