

Special Relativity (1905)

- Two Invariants
 - Speed of light, c
 - Spacetime distance $(ds^2=c^2dt^2-dx^2)$
- Unification of space and time
 - No absolute space or time exists: Relativity
- Special relativity does not include gravity

Albert Einstein (1879-

Time Dilation and Length Contraction

• When A sees B moving, B's time interval appears to be longer (clock ticks more slowly; *time dilation*) ed and B's length appears to be shorter (*length contraction*). And vice versa.

- A's space coordinate, *x*, does not coincide with B's, *x*'. Rather, *x* is a **combination of** *x*' **and** *ct*'.
- The same is true for time coordinate.
 - This means that simultaneous events in A's coordinate would not appear simultaneous in B's coordinate.
- But, spacetime distance remains unchanged.

Outside the train, the ball appears to be going faster: It has the same up-and-down speed, plus the forward speed of the train.

The faster the train is moving, the faster the ball appears to be going to the outside observer.

Intuitive way to understand it

- From your point of view, the ball appears to move faster; however, light cannot travel faster!
- Therefore, it must take light **more time** to come back down to the laser
 - Time Dilation

Relativistic Gamma Factor $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ • γ is always greater than 1. • As v approaches c, γ becomes large. • When v=c, γ is infinite. • B's unit time in A's frame equals A's unit time in • When B i

- B's unit time in A's frame equals A's unit time in A's frame **multiplied** by γ . (Hence *time dilation*)
- Be careful! The time actually elapsed in B's frame gets shorter because the unit time gets longer.
- B's unit length in A's frame equals B's unit length in B's frame divided by γ. (Hence *length contraction*)

Mass Increase

- A pushes B (whose mass at rest is *m*) by applying a force *F*.
 - Acceleration is given by a=F/m.
 - Velocity acquired would be v=a dt=Fdt/m
- When B is moving, the clock ticks more slowly - B feels the force for a shorter time
 - B feels the force for a shorter t - v'=a dt'=Fdt'/m=Fdt/(my)
- Thus, the mass of B appears to be bigger by γ .
- Nothing can be accelerated to the speed of light, because the mass becomes infinite.

Twin Paradox

- There are twins, A and B
- B moves relative to A
 - A's point of view
 - B is moving at speed v
 - B's clock ticks more slowly by $\boldsymbol{\gamma}.$
 - Therefore, B appears to be aging more slowly.
 - B's point of view
 - A is moving at speed v
 - A's clock ticks more slowly by $\boldsymbol{\gamma}.$
 - Therefore, A appears to be aging more slowly.
- So, which one is older, when they meet?
 - Twin Paradox

Case 1

- Original Frame
- Original Frame t ct
- A and B are at rest at the same place until event 1.
- Then A and B go on a trip on opposite directions.
- A and B turn around and come back at events 2.
- A and B finally meet at event 3.
- In this case, A's and B's worldlines are **symmetric**.
- A and B have traveled the **same**
- spacetime distance.

x

- Therefore, A and B have aged the same years.

Case 2

- <u>Original Frame</u> A remains at rest at all times.
 - B leaves home at event 1, turns around at event 2, and finally meets A at event 3.
 - In this case, A's and B's worldlines are **not symmetric**!
 - What happens?
 - The answer is that A has aged more than B.
 - Why?

ct

С

х

- B's spacetime distance is **shorter** than A's
- Remember, $ds^2 = c^2 dt^2 dx^2$

So, what was it?

- Motion of A and B remains completely relative **only when** both are moving at constant velocity.
 - Motion has to be inertial for two frames to be completely equivalent.
- However, for two people to know their initial ages and then meet later again, the motion cannot stay inertial → two frames are no longer equivalent.

