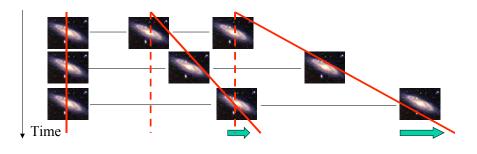

Expansion of the Universe

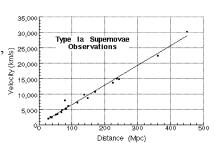
- The universe is expanding.
 - General relativity: space is dynamical and expanding.
 - Distance between galaxies increases with time
 - But there is important exception.
- L = R l
 - L: actual distance (which increases with time)
 - R: scale factor (which represents the size of the universe and increases with time)
 - -l: "comoving" distance (which is independent of time)


Velocity-distance Law

- Galaxies appear to be moving away from us.
 - Recession velocity of galaxies represents expansion velocity of space
- L = R l
 - Recession velocity V
 - = rate of increase of L
 - = (rate of increase of R) x l
 - = (rate of increase of R)/ $R \times L$
 - $= \boldsymbol{H} L$
 - More distant galaxies recede faster.
 - But, this does not mean that we are at the center of the universe.

Comoving Coordinate

- Galaxies are **not** moving!
 - It is space between galaxies that is expanding.
 - (But there is peculiar motion which we have ignored so far)
- "Comoving coordinate" is the coordinate which expands in the same way as space.
 - Therefore, galaxies always remain at the same position in comoving coordinates.


Discovery of the expansion of the universe

- How do we confirm the velocity-distance law?
 - We need recession velocities of galaxies: V
 - We need distances to galaxies: L
- How do we measure *V*?
 - Use Doppler shifts: V = c z (z is "redshift")
- How do we measure *L*?
 - There are various ways to estimate distances --- this is the most difficult part.
- Edwin Hubble (1889-1953) has done this and discovered expansion of the universe in 1929!

Expansion Rate

- V = HL
 - H is the expansion rate, and is called "Hubble's parameter"
 - H has to be determined observationally.
 - The latest determination:
 - H = 70 km/s/megaparsec, or
 - H = 21.5 km/s/million light years
 - Therefore, a galaxy at 100 million light-years away appears to move away from us at 2150 km/s.
 - A galaxy at 1 billion light-years away appears to move away from us at 21500 km/s (about 7% of the speed of light)
- Galaxies at 14 billion light-years away appear to move away from us at the speed of light!

Is there something wrong here?

- Galaxies at 14 billion light-years away recede at the speed of light.
 - Even more distant galaxies recede faster than the speed of light!
- Is this in accord with relativity?
 - The answer is yes.
 - If galaxies were moving faster than the speed of light, it would be in conflict with relativity; however, galaxies are <u>not</u> moving! It is space that is expanding.
 - Also, we cannot see galaxies receding faster than the speed of light because light does not reach us: Horizon