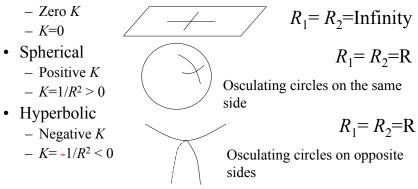
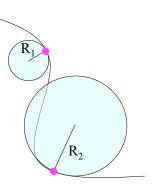
Curvature

- How curved is it?
 - The radius of an *osculating circle* can be used to measure curvature of a line at a given point.
 - Curvature = 1/(curvature radius)
 - Curvature is in units of 1/length
 - The signs posted on the road saying "R=300ft" or "R=500ft"
 - Which one is more curved?
- A straight line (zero curvature) has *R*=infinity

Flat, Spherical, Hyperbolic

- Homogeneous and Isotropic space can be either flat, spherical, or hyperbolic.
 - K is the same everywhere
- Flat

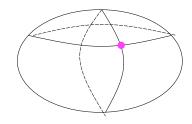




Gaussian Curvature

- Curvature of a surface
 - Draw two principal osculating circles at a given point on the surface
 - Obtain two principal curvature radii, R_1 and R_2
 - Gaussian curvature is given by $1/(R_1 R_2)$, up to the overall sign.
- *K*=Gaussian curvature - *K* is in units of 1/area

Johann Carl Friedrich Gauss (1777-1855)



Measuring Curvature

- θ =Sum of the angles of a triangle minus π
 - $\theta = K x$ (area of triangle)
 - $\theta = 0$ (flat)
 - $\theta > 0$ (spherical)
 - $\theta < 0$ (hyperbolic)
- θ=Change in direction of an arrow through a closed circuit of the "vector transport"
 - $\theta = K x$ (area enclosed by circuit)
 - This is neat try it yourself!

Distances in Curved Space

- In flat space (Euclidean space), a distance between two points on a surface is given by
 - (Distance)² = (x-int.)² + (y-int.)²

 $-ds^2 = dx^2 + dy^2$

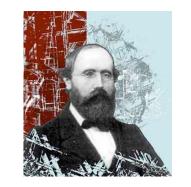
- In curved space (non-Euclidean), Euclidean formula no longer applies:
 - (Distance)²
 - $= \mathbf{F}(x\text{-int.})^2 + 2\mathbf{G}(x\text{-int.})(y\text{-int.}) + \mathbf{H}(y\text{-int.})^2$
 - $-ds^2 = Fdx^2 + 2Gdxdy + Hdy^2$
 - F, G, H : Metric Coefficients
 - Metric coefficients generally depend on x and y

Gauss's Theorema Egregium

- Gaussian curvature is an "intrinsic" one.
 - We don't need to know anything about 3rd dimension to measure Gaussian curvature of 2-dimensional space
 - "Flatlanders" can measure curvature of their world (which is 2 dimensional) without knowing anything about the 3rd dimension.
 - Therefore, we can measure Gaussian curvature of 3dimensional space without knowing anything about 4th dimension.
- Theorema Egregium
 - How metric coefficients vary from point to point on a surface contains **all the information of the geometry** of the surface.

Riemannian Geometry

- Riemann has extended Gauss's work to four and higher dimensions.
- Metric coefficients have:
 - 3 components in 2d
 - 6 components in 3d
 - 10 components in 10d
 - etc...
- **Riemann curvature**: generalization of Gaussian curvature in higher dimensions.
- Einstein used Riemannian geometry to construct the general theory of relativity.



Georg Friedrich Bernhard Riemann (1826-1866)

Spacetime Metric of the Universe

$$ds^{2} = c^{2}dt^{2} - \left[\frac{dR^{2}}{1 - KR^{2}} + R^{2}\left(d\alpha^{2} + \sin^{2}\alpha d\theta^{2}\right)\right]$$

- Important question: What is *K* of the universe?
 - K determines curvature of 3-d space in which we are living
- According to Gauss's theorema egregium, we can measure *K*, without knowing anything about the 4th dimension.
 - This implies that the shape of the observable universe can be determined!