Lifetime of the Sun

- Newton's law of gravity plus his 3rd law of motion gives the mass of the Sun
 - $-2 x 10^{30} kg$
- Apparent size of the Sun (32 arc-minutes=0.0093 radian) times the distance to the Sun (150 million km) gives the diameter of the Sun
 - 1.4 million km
- Apparent brightness of the Sun and the distance give the solar luminosity
 - -3.8×10^{26} watts
- How long could the Sun shine?
 - Gravitational energy is not enough
 - The Sun lasts for only 20 million years (Helmholtz in 1854; Kelvin in 1887)
 - Something other than gravitational energy was necessary

p-p chain (0.7% efficiency)

- ${}^{1}H + {}^{1}H -> {}^{2}H + e^{+} + v_{e}$
- ${}^{2}H + {}^{1}H -> {}^{3}He + \gamma$
- ${}^{3}\text{He} + {}^{3}\text{He} -> {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H}$
 - ¹H: proton, ²H: deuteron
 - ³He: Helium-3, ⁴He: Helium-4
 - e⁺: positron, v_e : neutrino, γ : gamma ray
- In total, four protons are fused into one helium-4 and produce energy:
 - ¹H + ¹H + ¹H + ¹H -> ⁴He + "binding energy"
 - One proton weighs $1.6726 \text{ x } 10^{-27} \text{ kg}$
 - One helium-4 weighs 6.643 x 10^{-27} kg
 - Four protons minus one helium = $4.7 \times 10^{-29} \text{ kg}$ -> energy
 - This is only 0.7% of the original mass of four protons.

Nuclear Energy

- If the Sun could convert *all* of its mass into energy via Einstein's formula, $E=mc^2...$
 - The Sun would shine for about 15 trillion years!
 - In reality, nuclear reaction in the Sun can convert only a tiny fraction (~0.07%) of the total mass into energy.
 - Only 0.7% of hydrogen gets converted to energy.
 - Not all mass is hydrogen (H:75%, He:25%)
 - Nuclear reaction occurs only in the central region.
- Calculations show that the Sun shines for about 10 billion years by burning hydrogen.

Nuclear Reaction Close-up

- p-p chain is a slow process because...
 - Electric repulsive force prevents one proton from colliding another one. Quantum tunneling (or "barrier penetration") takes a long time to occur.
 - The first reaction, ${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v_{e}$, involves weak interaction, which is a very slow process.
- Nuclear reaction occurs only in the central region of the Sun because...
 - Density is high (protons easier to meet)
 - Temperature is high (protons easier to penetrate the barrier)
 - Fusion occurs within 2% of the total volume

Hydrostatic Equilibrium

- Gas is pushed outward by pressure.
 - Nuclear energy heats up gas -> high pressure
 - Pressure = $k_B x$ (number density) x (temperature)
 - Pressure is highest at the center and decreases at larger distances.
- Gas is pulled inward by gravity.
- "Hydrostatic equilibrium" = "Pressure force balances gravitational force"
 - Gravity = GM^2/R^2
 - Pressure = $k_B nT$
 - Calculations show that temperature should be ~ 20 million K
 - High temperature is necessary to balance gravity.

Energy Transfer

- Core (0-0.25 R_{solar}): ~15 million K
 - Energy is produced by fusion
- Radiative zone (0.25-0.70 R_{solar}): 2 to 8 million K
 - Energy is carried by radiation (photons) up to near the surface of the Sun
 - Photons frequently scattered by electrons (random walk)
- Convective zone (0.70-1 R_{solar}): < 2 million K
 - Photons are absorbed by atoms near the surface; unable to carry energy
 - Energy is then carried by "convection" (clue:boiled water)
- Surface: 5,800 K
 - It takes about a million years from the core to the surface.
- Depth of convective zone depends on stellar mass. (Low mass stars have deeper convective zone.)