

Herschel's Milky Way (1785) Sun near the center

- Distances to the stars were measured assuming:
 - No absorption or attenuation in interstellar space
 - All stars are similar to the Sun
 - Stars are distributed uniformly in space
- None of the assumptions was correct

Milky Way

- Modification to the Newtonian universe
 - Distribution of stars is not spherical
- Thomas Wright (1711-1786)
 - "An Original Theory of the Universe" (1750)
 - Two models accounting for the Milky Way
 - Many-universe hypothesis
- Immanuel Kant (1724-1804)
 - Adapted one of Wright's idea: the Milky Way is disky
 - Many-universe: nebulae are other milky ways
- William Herschel (1738-1822)
 - Discovered Uranus
 - His observations of stars showed that the Milky Way was flat.
 - Famous diagram of the Milky Way (1785)

How was Herschel deceived?

- Estimated distances were inaccurate because of...
 - Interstellar absorption and attenuation
 - Distant stars look dimmer because:
 - they are farther away, and
 - their lights are attenuated by interstellar dust.
 - He did not know about the latter → overestimated distances toward the center of the Milky Way
 - Stars are different
 - Binary stars (two stars orbiting each other) are at the same distance, but they have different brightness
- Stars are not uniformly distributed
 - The most clouded region does not necessarily imply the most extended region
- After proper corrections, the Sun is not at the center of the Milky Way.

Many or One?

- Pierre Simon de Laplace (1749-1827)
 - Rotation balances gravity
 - The nebular theory of formation of the Solar System
 - One-universe hypothesis
 - only one Milky Way (or galaxy) in the universe, and nebulae are gas clouds forming other solar systems
 - His model remained standard until 1924
 - In 1924, Edwin Hubble showed that Andromeda was far beyond the outer reaches of stars in the Milky Way
- Now we know that what they called "nebulae" included both galaxies and gas clouds.

How was c measured?

- Galileo Galilei
 - Exchange of light between two people separated by one mile failed to measure c: c > 333.5 km/s
- Ole Roemer in 1676
 - Eclipse of Io
 - -c = 214,000 km/s
- James Bradley in 1725
 - Aberration of light from stars (41 arc-seconds)
 - -c = 301,000 km/s
- Armand Fizeau in 1849
 - A noble experiment using a rotating cogwheel
 - -c = 315,000 km/s
- Currently accepted value is c = 299,792.458 km/s (1972)
 - Now used for definition of the meter (1983)