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ABSTRACT
Hundreds of gravitational microlensing events have now been detected toward the Galactic bulge,

with many more to come. The detection of Ðne structure in these events has been theorized as an excel-
lent way to discover extrasolar planetary systems along the line of sight to the Galactic center. We show
that by focusing on high-magniÐcation events, the probability of detecting planets of Jupiter mass or
greater in the lensing zone is nearly 100%, with the probability remaining high down to[(0.6È1.6)RE]Saturn masses and substantial even at 10 Earth masses. This high probability allows a nearly deÐnitive
statement to be made about the existence of lensing-zone planets in each such system that undergoes
high magniÐcation. One might expect light-curve deviations caused by the source passing near the small
primary-lens caustic to be small because of the large distance of the perturbing planet, but this e†ect is
overcome by the high magniÐcation. High-magniÐcation events are relatively rare (e.g., D1/20 of events
have peak magniÐcations greater than 20), but they occur regularly, and the peak can be predicted in
advance, allowing extrasolar planet detection with a relatively small use of resources over a relatively
small amount of time.
Subject headings : gravitational lensing È planetary systems

1. INTRODUCTION

Microlensing has become a useful tool in astronomy for
discovering and characterizing populations of objects too
faint to be seen by conventional methods. By repeatedly
monitoring millions of stars, several groups have now
detected the rare brightenings that occur when a dark
object passes between the Earth and a distant source star

et al. et al. et al.(Alcock 1993 ; Aubourg 1993 ; Udalski 1993 ;
et al. These detections have now becomeAlard 1995).

routine, with hundreds of events reported toward the
Galactic bulge, mostly by the MACHO collaboration
(Alcock et al. The reliable detection of large1996, 1997a).
numbers of such lensing events allows one to use them for
several auxiliary purposes. For example, relatively rare
microlensing ““ Ðne-structure ÏÏ events, where deviations
from the simple brightening formula (Paczyn� ski 1986 ;

are apparent, can be searched for. These haveGriest 1991)
allowed several new e†ects to be observed, such as parallax
motion (Gould et al. the Ðnite1992, 1994b ; Alcock 1995),
size and proper motion of the source star et al.(Alcock

and binary lensing & Paczyn� ski1997b), (Mao 1991 ;
et al. et al.Udalski 1994 ; Pratt 1995).

Here we consider the special case of binary lensing when
one (or more) of the companions is actually a planet orbit-
ing the primary lens. This possibility has been investigated
by several groups, starting with & Paczyn� skiMao (1991)
and & Loeb They found the remarkableGould (1992).
result that detectable Ðne structure occurs relatively fre-
quently even for rather low-mass planets. For example,

& Loeb Ðnd for a Jupiter-mass planet 5 AUGould (1992)
from a solar-mass star that the probability of detecting the
Ðne structure caused by the Jupiter-mass planet is about
17%, while for a Saturn-like planet the probability is about
3%. These relatively high probabilities occur when the
planet is in the ““ lensing zone, ÏÏ which will be discussed
later, but they imply that many planetary systems could be
discovered if a systematic search for microlensing Ðne struc-
ture were made. The light-curve deviations caused by a

planet last only a few hours or days (depending on the mass
of the planet) and can occur at any time during the much
longer (D40 days) primary lensing event. In order not to
miss these short excursions, round-the-clock monitoring
would be required, implying dedicated telescopes at several
locations. In return, dozens to hundreds of planetary detec-
tions could be made, more than by any other proposed
detection method. Thus, microlensing may be the best way
to gather statistics on the frequency, mass distribution, and
semimajor axis distribution of planets. Microlensing is also
sensitive to planetary systems throughout the Galaxy and
not just in the solar neighborhood, as are most other planet
search techniques. The main disadvantage to microlensing
is that further study of individual systems is probably
impossible.

Following the early work, contributions have been made
by several other groups. & Falco calculatedBolatto (1994)
detection probabilities ; & Rhie andBennett (1996)

extended to Earth-mass planets byWambsganss (1997)
including the Ðnite source e†ect ; & GouldGaudi (1997)
discussed extraction of physical parameters from obser-
vational data ; and andTytler (1996), Peale (1997), Sackett

calculated the number of expected detections for(1997)
realistic observing strategies.

2. MICROLENSING FORMULAS, CAUSTICS, AND

MAGNIFICATION MAPS

Microlensing occurs when an intervening stellar-mass
lens passes close to the line of sight between an observer and
a distant source star. For Galactic distances, if the lens is a
single-point mass, two images form with a separation of
milliarcseconds, which is too small to resolve. However,
since the sum of the areas of the images is larger than the
projected area of the source, the magniÐcation, which is
given by the ratio of these areas, can be signiÐcant. When
the source lies directly behind the lens, the image becomes a
ring of radius and the magniÐcation theoreticallyRE,becomes inÐnite. Points in the source plane where the mag-
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niÐcation is inÐnite are called caustics, and the positions of
the images of these caustics are called critical curves. For a
single lens, the caustic is single point behind the lens, and
the critical curve is the Einstein ring.

The scale of the microlensing e†ect is set by the Einstein
ring :
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where is the mass of the primary lens, is them
l

L \ Dosdistance to the source star, is the fractionalx@\ Dol/Dosdistance of the lens, is the solar radius, and is theR
_

M
_solar mass. Throughout, we will scale all lengths to ForRE.

convenience, note that 1 AU is 214.94 R
_

.
When the lens consists of two pointlike objects, the

caustic positions and shapes depend on the planet-to-lens
mass ratio and the projected planet-lens separa-q \m

p
/m

ltion The primary lens is assumed to reside at the origin,x
p
.

and the planet is along the positive x-axis at in units ofx
pFor arbitrary distances and mass ratios, the causticRE.structure can be complicated, but for small values of q, and

for an that is not precisely unity, the picture is simple.x
pThe pointlike single-lens caustic becomes a tiny wedgelike

caustic, still located near x \ 0, while one or two new caus-
tics appear depending on the planet position. For planets
far from the lens there is one new caustic, a small(x

p
[ 1),

diamond-shaped planetary caustic located on the same side
of the lens as the planet, while for two small heart-x

p
\ 1,

shaped caustics appear close together on the opposite side
of the lens. As discussed in the the position ofAppendix,
these caustics is given approximately by x

c
B (x

p
2[ 1)/x

p
.

shows the caustics for the case of q \ 0.003, corre-Figure 1
sponding to a Jupiter-mass planet around a 0.3 star.M

_

FIG. 1.ÈCaustics for q \ 0.003, showing the central primary caustic
near the origin and the larger planetary caustics. Panel (a) is for a planet at

and panel (b) is for the ““ dual ÏÏ position atx
p
\ 1.3, x

p
\ 1/1.3 \ 0.769.

Panel (a) is for and panel (b) is forx
p
\ 1.3, x

p
\ 1/1.3 \

0.769. We will call the caustic near x \ 0 the ““ central ÏÏ or
““ primary-lens ÏÏ caustic and the other caustics the
““ planetary ÏÏ caustics.

The relative motion of the source, lens system, and obser-
ver can be described as the source moving behind a static
lens plane described by the projected positions of the lens,
planet, and caustics. We work in the lens plane throughout
and project physical sizes such as the source stellar radius
into dimensionless numbers in the lens plane by multiplying
by x@ and dividing by If the planet orbits the primaryRE.lens in a plane other than the lens plane, its position is also
projected into the lens plane.

For single-point lenses, high-magniÐcation events occur
when the source comes near the caustic at x \ 0. If u
is the projected distance of the source from the lens (in
units of in the lens plane), the magniÐcation isREA\ (u2] 2)u~1(u2] 4)~1@2D u~1 for large A. The peak
magniÐcation occurs at the distance of closestAmax umin,approach. The trajectory intersects a circle of radius atuminits closest approach, with b being the angle between this
intersection point and the positive x-axis. With the addition
of a planet, we continue to deÐne high-magniÐcation events
as those caused by the source approaching the central
caustic. For planetary-mass binary systems, the light curve
will be very close to that of a single lens for most of its
duration.

Planetary Ðne structure in the high-magniÐcation case
will arise because of the di†erence between a point caustic
and the wedgelike central caustic. If AD 1/u as the source
approaches the caustic, then the size of the deviation
d \ dA/AD [Adu, where du is the shift in the caustic posi-
tion due to the planet. It is shown in the that theAppendix
size of the central caustic along the x-axis is

u
c
B

qx
p

(x
p
[ 1)2 (2)

and that this formula is invariant under a ““ duality ÏÏ trans-
formation As described in the thisx

p
] 1/x

p
. Appendix,

formula is good for q > 1 and not near unity. Thus, forx
phigh-magniÐcation events, we expect deviations of order

d D u
c
A . (3)

This estimate of light-curve deviation is in rough agreement
with the more precise calculations of the next sections, and
the caustic size estimate (eq. [2]) is excellent, as can be seen
in shows close-ups of the central causticFigure 2. Figure 2
for various planetary positions and planetary-mass ratios.
The symmetry is also apparent in these Ðgures.x

p
] 1/x

pMagniÐcation maps of the source plane projected onto the
lens plane are especially useful when discussing the detec-
tion of planets or the probability of certain types of events
occurring. These are formed by imagining a source at each
point in the plane and calculating the resulting image sizes
and resulting magniÐcations. Observationally, one mea-
sures the microlensing light curve, the apparent brightness
of a star, as a function of time, and this is completely
described by a track through this magniÐcation map. The
duration of the event depends on the size of the Einstein
ring and the relative projected transverse speed of thev

Mlens system. We will divide all times by so thetE \RE/vM,
time to cross the Einstein ring diameter is *t \ 2.0.

Examples of magniÐcation maps and the resulting light
curves can be found in & LoebWambsganss (1997), Gould
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FIG. 2.ÈClose-ups of the central primary lens caustic. Left-hand panels show planetary positions while right-hand panels show a planet in thex
p
[ 1,

dual positions All panels except (g) and (h) have q \ 0.003. Note the excellent match of left-hand and right-hand panels, except for (e) and ( f ), where the1/x
p
.

approximation is just starting to break down. Panels (g) and (h) are for q \ 0.0001, where the caustics are predicted to be 30 times smaller and symmetry is
restored.
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and several other places. shows some(1992), Figure 3
example maps, and shows some example lightFigure 4
curves.

There are several techniques to calculate such maps in
practice. For pointlike lenses, the lens equation in complex
notation is given by (e.g., Witt 1990)

z
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where are the positions of the point masses inz
j
\ x

j
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jthe lens plane, is the position of the source,z
s
\ x

s
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sis the position of the images, and the overbarz\x
i
] iy

idenotes complex conjugation. We can rescale this equation
by dividing all lengths by and all masses by andRE m

lspecialize to just one planet to get

z
s
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p
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One sees that the mapping from an image position at z to
a source position at is one to one and extremely simple ;z

showever, the reverse mapping requires solving the above
equation for z and results in a Ðfth-degree polynomial in z

s(see, e.g., The partial magniÐcations are given byWitt 1990).
the Jacobian of the mapping from the source to lens plane
evaluated at the image positions :
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where the sign of A gives the parity of the image, and in our
case Caustics and criticalLz

s
/Lz6 \ 1/z6 2] q/(z6 [ x

p
)2.

curves are found as points where The total mag-A
i
\O.

niÐcation is just the sum of the absolute values, A\;
i
oA

i
o.

The most direct way to create a magniÐcation map is to
solve for A at each point in the source plane by solving the
Ðfth-degree polynomial. When the source is inside a caustic
there are Ðve images, while if the source is outside the caus-
tics there are two spurious solutions and only three images.
In the latter case, one of these images is behind the lens and
is very small, and the other two are important. A com-
plication of this approach occurs when the mass of the
planet is small. The magniÐcation map varies on scales
smaller than the planetary Einstein ring which can beR

p
,

small compared with the size of the projected source star
radius. Thus, one must integrate the magniÐcation over the
limb-darkened source proÐle to get an accurate total mag-
niÐcation. The caustic structure gives rise to singularities in
A, which make this integration tricky. (See & RhieBennett

& Gaucherel and & Gould1996 ; Gould 1997 ; Gaudi 1997
for examples of this approach.) We have developed com-
puter programs that successfully implement this approach,
but they are rather slow.

Alternatively, one can note the simplicity of the mapping
from image to source plane and simply cover the image
plane densely with ““ photons ÏÏ and then map them back to
their source positions. The resulting density of source
photons is proportional to the ratio of image to source
areas and therefore proportional to the magniÐcation. See

for an example of this method. ThisWambsganss (1997)
method intrinsically incorporates the Ðnite source e†ect
since one must bin the source photons. The bin size is the
e†ective source size. To consider a larger source size or to
include a round source with limb darkening, one merely
convolves the magniÐcation map with a kernel made from
the desired source proÐle. We mainly used this method in

creating our maps, although we checked them in various
ways using direct solution.

Light curves of single-lens microlensing are simple
smooth curves while if a(Paczyn� ski 1986 ; Griest 1991),
planet exists there can, in addition, be several sharp peaks.
The durations of these peaks typically scale with R

p
P q1@2

and last only a day or two, or even only a few hours, com-
pared with the typical primary lens event duration of 40
days et al. A nice set of examples of both(Alcock 1997a).
magniÐcation maps and light curves can be found in

For both maps and light curves weWambsganss (1997).
plot residuals :

d \*A
A

\ Abinary[ Asingle
Asingle

. (7)

In we show some maps for q \ 10~4.Figure 3 Figure 3a
shows where there is only one planetary caustic,x

p
\ 1.3,

and shows where there are two planet-Figure 3b x
p
\ 0.8,

ary caustics on the other side of the central caustic. The
light curves in are for q \ 0.003,Figure 4 x

p
\ 1.5, umin\

0.05, and various angles of approach. Note the relatively
simple structure of these high-magniÐcation light curves
(with the exception of the trajectory along the x-axis, which
also hits the planetary caustic).

The method of magniÐcation maps lets us investigate the
e†ects of sources of di†erent radii. Once a high-resolution
map is produced, it can be quickly convolved with any of
various source sizes and proÐles, and the light curves and
probabilities can be recomputed. For our convolution
kernel we use a limb-darkened proÐle given by I(r) \

where is the stellar radius, r is0.4] 0.6(1 ] r2/R
*
2)1@2, R

*the distance from the center of the star, and I is normalized
to give a total Ñux equal to the preconvolution Ñux. The
maps in and were convolved with a kernel ofFigures 3a 3b
radius while is for a source radius ofu

*
\ 0.003, Figure 3c
Note that these radii are in units of the Einsteinu

*
\ 0.03.

ring (eq. [1]) and projected into the lens plane. So, for
example, a typical main-sequence bulge star of radius R

*
\

3 projects to if the lens is at 4 kpc and toR
_

u
*

\ 0.003
if the lens is at 7 kpc. The source is assumed tou

*
\ 0.0084

be at 8 kpc and the primary lens to have inm
l
\ 0.3 M

_these examples. A giant star of radius 10 projects toR
_for x@\ 0.5, and for x@\ 0.875. Theu

*
\ 0.01 u

*
\ 0.028

map of is therefore descriptive of a 30 starFigure 3c R
_with a lens system at 4 kpc or a 10 source with a lensR

_system at 7 kpc. An interesting feature of is theFigure 3c
circular ring around the central caustic. There is a jump in
magniÐcation as the limb of the source star crosses the
caustic. However, as the star covers more of the region
around the caustic, a cancellation occurs since there is a
negative deviation on one side of the caustic and a positive
deviation on the other.

In we show the result of increasing source sizeFigure 5
on the deviation light curves. The light curves are all for
q \ 10~4, and b \ 50¡. As expectedx

p
\ 1.3, umin\ 0.02,

& Wickramasinghe &(Gould 1994a ; Nemiro† 1991 ; Witt
Mao et al. as the source radius1994 ; Alcock 1997b),
increases the amplitude of the signal decreases and the
duration of the deviation increases. When the star radius is
increased to then it actually crosses the centralu

*
\ 0.03,

caustic, giving rise to two bumps on the light curve. These
bumps occur when the trajectory crosses the ring seen in

If detected, these bumps are very useful since theFigure 3c.
star is in e†ect resolved and the time between the bumps
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FIG. 3.ÈExample magniÐcation maps show the ratio of planetary to single-lens magniÐcation in the source plane. Light areas show positive deviations
(ratios greater than 1), and dark areas show negative deviations. All panels are for q\10~4, a planet of 10 Earth masses around a 0.3 star. (a)M

_
x
p
\1.3

with a source radius of (b) with the same source radius ; (c) but with the large source radius ofu
*

\ 0.003 ; x
p
\ 1 (x

p
\ 0.8) x

p
\ 1.3, u

*
\ 0.03.



FIG. 4.ÈExample of high-magniÐcation light curves, for q \ 0.003, and various angles of approach to the central caustic. The upperx
p
\ 1.5, umin \ 0.05,

left-hand panel shows the total magniÐcation light curve, while the others show only the deviation Time is plotted in unitsd \ (Abinary [ Asingle)/Asingle.of The b \ 0¡ trajectory is perpendicular to the lens-planet axes and between them, while b \ 180¡ is on the side opposite the planet. As is apparent, thetE.b \ 90¡ trajectory also hits the larger planetary caustic.
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FIG. 5.ÈComparison of planetary deviation light curve for di†erent source radii : 0.01, and 0.03, corresponding to with lens at 4u
*

\ 0.003, R
*

\ 3 R
_kpc, with lens at 4 kpc, and with lens at 7 kpc, respectively. The deviation d is plotted vs. the time in units of These curves are forR

*
\ 10 R

_
R

*
\ 10 R

_
tE.q \ 10~4, and b \ 50¡. The smaller the stellar radius, the higher and sharper the deviation. The bumps in the radius curvex

p
\ 1.3, umin \ 0.02, u

*
\ 0.03

occur as the limb of the star crosses the central caustic.

allows the projected transverse velocity to be measured. For
high-magniÐcation events, the width (and height) of these
bumps are determined by the size of the central caustic, and
so information about q and can also be gleaned. Inx

pFigures and however, the width of the ring and the3 5,
bumps is determined not by the size of the central caustic
but by the resolution of our underlying magniÐcation
map. Extraction of planetary parameters from high-
magniÐcation events will be discussed in more detail else-
where & SaÐzadeh(Griest 1998).

3. DETECTING PLANETS

Current experiments to search for planets and other
microlensing Ðne structure piggyback the very successful
MACHO collaboration survey alert system et al.(Alcock

et al. The MACHO collaboration moni-1996 ; Pratt 1995).
tors millions of stars each night and checks them for micro-
lensing. When a candidate microlensing event is detected,
an alert is sent by e-mail to any interested Two mainparty.1
follow-up collaborations are underway : The MACHO
GMAN collaboration et al. et al.(Alcock 1996 ; Pratt 1995)
and the PLANET collaboration et al.(Albrow 1996).
GMAN has detected parallax events, the Ðnite source size,
and proper motion Ðne structure, as well as several binary-
lens events. PLANET has followed many events and
detected much Ðne structure as well. Two new survey
systems, EROS II and OGLE II, plan to soon generate

1 http ://darkstar.astro.washington.edu ; macho=astro.washington.edu.

alerts, and new additions to the follow-up networks should
make coverage of the short-duration planetary deviations
more complete.

Several groups have now calculated the probabilities that
a well-monitored microlensing alert will give rise to planet-
ary Ðne structure. In calculating probabilities, workers cal-
culated typical light curves caused by planetary systems and
then deÐned a detection statistic. For example, &Mao
Paczyn� ski and & Falco deÐned(1991) Bolatto (1994)
““ detectable ÏÏ as at least one light-curve point inside an area
around the planetary caustic. & Loeb con-Gould (1992)
sidered a planet detectable if any point on the light curve
deviated by more than 5% from the single-lens case.

& Rhie deÐned detectable as the light curveBennett (1996)
deviating by more than 4% for a period of &tE/200. Gould
Loeb found that for a Jupiter-mass planet at a dis-(1992)
tance of 5 AU from its sun, the probability of detection thus
deÐned was nearly 17%. Given that JupiterÏs mass is 0.001

it was remarkable that the detection probability wasM
_

,
so high. They explained this in terms of ““ resonant ÏÏ lensing,
which occurs when the planet is near the Einstein ring
radius and thus discovered the ““ lensing zone. ÏÏ As(x

p
B 1),

discussed in detail in the we deÐne the lensingAppendix,
zone as the range For a Saturn-mass0.618¹x

p
¹ 1.618.

planet, their detection probability dropped to 3%, and for
smaller mass planets, it was even smaller.

Although they performed a very complete calculation,
Gould & Loeb made various approximations. For example,
they did not calculate the deviation from a magniÐcation
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map but approximated the region of 5% deviation as a long
rectangular box in the source plane. They did not include
Ðnite source e†ects, which should not be large for the
Jupiter-mass and Saturn-mass planets on which they con-
centrated, but which could be large for Uranus-mass or
Earth-mass planets.

By including Ðnite source size e†ects, & RhieBennett
and continued the calculation to(1996) Wambsganss (1997)

lower mass planets, where the Ðnite size of the source star
can be important. Bennett & Rhie found probabilities of
about 2% for masses as low as Earth mass. Peale (1997),

and calculated in detail theTytler (1996), Sackett (1997)
number of expected planetary detections for several realistic
observing scenarios, and now several groups are under-
taking extensive microlensing searches for planets. See

or for reviews. ThePeale (1997), Sackett (1997), Sahu (1997)
basic plan is to monitor continuously all bulge stars under-
going microlensing with the hope of Ðnding planetary
signals in a few percent of them.

4. HIGH-MAGNIFICATION EVENTS

Planetary magniÐcation maps have their most pro-
nounced deviations from single-lens maps near the planet-
ary caustics. The size of these caustics scales directly with
the planet-lens mass ratio, and they are located roughly at
positions given by equation (A2). Thus, the probability of
detecting a planet is roughly proportional to the angle-
averaged cross-sectional area of this region, and this is how

& Paczyn� ski and & Falco calcu-Mao (1991) Bolatto (1994)
lated planetary detection probabilities. & LoebGould

also pointed out that the region of large deviation(1992)
continues on a line from the planetary caustic toward the
primary lens.

Gould & Loeb state that in order to get a large deviation,
the planet must come near one of the two primary-lens
images. This is equivalent to saying that large deviations
occur when the source is near the planetary caustics. In this
paper, we point out that for high-magniÐcation events,
when the source comes very close to the very small central
caustic, large deviations from a single-lens light curve also
occur. Thus, even though the planet is not near one of the
primary lens images, planet detection can occur. This is
because the high magniÐcation makes the small changes in
the central caustic detectable. In summary, very close to the
lens center, the di†erence between the circularly symmetric
single-lens caustic and the tiny wedgelike binary central
caustic causes measurable asymmetries in the light curve.
Examples of these caustics are given in andFigure 2,
example light curves are given in Note fromFigure 4.

that the structure of high-magniÐcation lightFigure 4
curves is typically simpler than the structure of planetary
caustic crossing light curves.

In order to quantify this e†ect, we used our magniÐcation
maps to calculate a large number of light curves. For com-
parison purposes, we deÐned several ““ detection criteria.ÏÏ

is the Gould & Loeb criterion that at least one point hasP5a deviation of more than 5% from the single-lens case. isP4our analog of the Bennett & Rhie criterion that the event
have a time of at least with more than a 4% devi-tE/200
ation. As a challenge to observers, we also deÐned whereP1,the planet is assumed to be detectable if it spends a duration
of at least with a deviation from the single-lens casetE/200
of at least 1%. The high magniÐcation of the signal does
make this criteria less demanding than for the more modest

magniÐcation events usually considered. Finally, we deÐne
using a s2 statistic. We deÐne where the sumPs s

p
2\ ; d

i
2,

is over all points for which u \ 0.2, that is, the total squared
deviation for points during the time when Aº 5. We deÐne
a planet as detectable if a number set by trial ands

p
2 º 0.04,

error to correspond approximately to the sensitivity of P5and If the photometric measurement errors were thisP4. p
i
,

value would correspond to a s2 of 0.04/p
i
2.

Note that in calculating the deviation, Gould & Loeb
subtracted a single lens at with the primary lens massx

l
\ 0

unchanged, while Bennett & Rhie subtracted a single lens
of mass at the center-of-mass position. We triedm

l
] m

pboth of these subtraction schemes and did not Ðnd any
signiÐcant di†erence. We use the deviation ratio d \

since this quantity has constant(Abinary[ Asingle)/Asingle,magnitude errors as the magniÐcation increases, close to
what happens in a CCD observation.

To investigate high-ampliÐcation events, we took a
sample of events with for 0.05, 0.03,umin¹ uth, uth\ 0.1,
and 0.02, corresponding, respectively, to single-lens magniÐ-
cations of at least 10, 20, 33, and 50. The quantity is theumindistance of closest approach of the source to the primary
lens (in units of The maximum magniÐcationRE). Amax^for Given the probability of an event1/umin Amax? 1. uth,occurring with is known a priori to be equal toumin¹ uthwhere it is assumed that every event with primary-uth/ucrit,lens magniÐcation greater than is alerted on and moni-Acrittored for So, for example, with(ucrit\ 1 Acrit\ 1.34).

roughly 3% of monitored events will haveucrit\ 1, umin¹

0.03. For each set of parameters, we created 18,000 light
curves with angles of approach varying by 1¡ and 50 di†er-
ent values of umin.Figures and show the results of the probability6, 7, 8, 9
calculations. Remarkable is the very high probability for
detecting planets within the lensing zone. Figure 6
(q \ 0.003) shows a Jupiter-mass planet around a 0.3 M

_star. (q \ 0.001) shows a Saturn-mass planetFigure 7
around a 0.3 star, or equivalently a Jupiter-mass planetM

_around 1 star. (q \ 10~4) shows a planet of 10M
_

Figure 8
Earth masses around a 0.3 star.M

_For or 0.03, and using the least sensitive ofuth\ 0.02 P5,our detection criteria, basically 100% of Jupiter-mass
planets would be detected over the entire lensing zone and
substantially beyond it. As indicated by equation (3), the
lensing-zone probabilities drop as increases, and there-uthfore decreases to as low as 90% for and to asAmax uth\ 0.05
low as 80% for The statistic performs simi-uth\ 0.1. s

p
2 Pslarly or slightly better than and over the entire range.P4 P5If one could use by detecting 1% deviations in the lightP1curve, then the detection probabilities would remain near

100%, far beyond the lensing zone for all values of uth.For Saturn-mass planets, shows that probabil-Figure 7
ities are also near 100% inside the lensing zone, with a
minimum of 90% for and a minimum of 80%uth\ 0.02
detected for The dropo† in sensitivity is quiteuth\ 0.03.
rapid outside the lensing zone and for larger values of uthbut stays near 100% at and above 40% even at thex

p
B 1,

edge of the zone. If one could detect 1% devi-uth\ 0.1
ations, then the probability is again nearly 100% over a
wide range of x

p
.

We note a duality invariance in the probabilityx
p
] 1/x

pplots for high-magniÐcation events. The probability of
detecting a planet at is the same as detecting ax

p
\ 0.5

planet at This is because the central caustic is almostx
p
\ 2.
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FIG. 6.ÈProbability of planetary detection for high-magniÐcation events for a planet/lens mass ratio of q \ 0.003, corresponding to a Jupiter-mass planet
around a 0.3 star. The probability is plotted vs. the planet-lens separation in units of Each panel shows a di†erent value of threshold whereM

_
x
p

RE. uth,only events that have are counted. Four di†erent detection statistics are plotted in each panel : (solid line) ; (long-dashed line) ; (short-dashedumin ¹ uth P5 P4 Psline) ; (dotted line). The light vertical lines demarcate the lensing zone.P1

identical under this transformation (see eq. [2] and Fig. 2).
The duality symmetry also shows up in the position of the
planetary caustics : and give caustics at the samex

p
1/x

p
x
caccording to equation (A2) (see This symmetryFig. 1).

implies a degeneracy in determining the planet position
from the light curve for high-magniÐcation events. High-
magniÐcation light curves with a planet at will be almostx

pidentical to those with a planet at in most cases. There1/x
pare also potential degeneracies between planetary mass and

distance, and these will be considered elsewhere &(Griest
SaÐzadeh See & Gould for an extensive1998). Gaudi (1997)
discussion of degeneracies for planetary caustic events.

Figures and show the probabilities for a planet of 108 9
Earth masses (q \ 10~4 From equation (2), we expectM

_
).

the size of the deviations to drop by a factor of 10 from the
q \ 0.001 case, so we expect small probabilities when using

or Also, we expect statistics such as whichP4 P5. P4,require a minimum time above a threshold, to lose sensi-
tivity in comparison with which requires only oneP5,deviant point. These expectations are borne out in Figure 8,
which shows a maximum probability of D80% near x

p
B 1,

dropping rapidly even inside the lensing zone, and probabil-
ities below 1% at the edge of the lensing zone. fares muchP1better, giving probabilities of 80%È100% near the zone
center and dropping to 20%È50% near the zone edge.

In order to test the e†ect of the Ðnite source size on our
probabilities, we convolved each map with a kernel rep-
resenting a limb-darkened source star of various radii and
then recalculated the probabilities. For q \ 0.003, we found
no signiÐcant di†erences with radii up to corre-u

*
\ 0.01,

sponding to a typical giant star at a distance halfway to the
Galactic center. For q \ 10~4, however, the e†ect is quite
apparent, as is shown in Figures and For the8 9. u

*
\ 0.01,

peak or probabilities are less than 35% with a rapidP5 P4drop even inside the lensing zone. In this case, the convolu-
tion has caused the maximum deviations due to the central
caustic to drop below 4%, so that the detections are not
actually ““ high-magniÐcation ÏÏ events but rather are caused
by trajectories that pass through the planetary caustic
region. This explains the counterintuitive result that the

case has a higher probability than theuth\ 0.1 uth\ 0.02
case. Low values of force the trajectories to pass near theuthorigin, while higher values include trajectories that are more
likely to hit the planetary caustic. If 1% deviations could be
detected, the statistic gives high probabilities even forP1planets of 10 Earth masses and giant source stars. The
higher probabilities of show that the centralFigure 8
caustic is still important for u

*
\ 0.003.

We note that all the probabilities calculated here are for
the projected lens-planet separation. To Ðnd the probability
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FIG. 7.ÈSame as except for q \ 0.001, corresponding to a Saturn-mass planet around a 0.3 star, or a Jupiter-mass planet around a 1 starFig. 6, M
_

M
_

of detecting a planetary system with a given semimajor axis,
our probabilities must be averaged over the possible incli-
nation angles of the planetary system. To Ðnd the probabil-
ity of Ðnding a planet of a given mass, one must then
average over a distribution of semimajor axes and also over
the density of planetary systems along the line of sight,
taking into account the variation of x@. See & LoebGould

for an example. This calculation will be presented(1992)
elsewhere & SaÐzadeh but see for a caveat.(Griest 1998), ° 6

5. DISCUSSION

High-magniÐcation events have both advantages and dis-
advantages when compared with ordinary planetary Ðne-
structure events. One obvious advantage is that since the
source star is highly magniÐed, more Ñux is available and
more accurate photometry can be performed. For example,
events satisfying the or criteria are 3È4uth\ 0.03 uth\ 0.02
mag brighter during peak magniÐcation, and thus Poisson
errors in the photometry are reduced. The obvious dis-
advantage is that high-magniÐcation events occur rarely,
only 2%È3% of the time for the above examples, so the
number of such events will be small. In some situations, this
disadvantage may be somewhat o†set since fewer telescope
resources will be needed to perform the follow-up. Typical
groups searching for planets anticipate monitoring dozens
of events per day in a round-the-clock manner since it is
never known when a few-hour-long planetary excursion

will take place. This requires a worldwide system of dedi-
cated telescopes. Since the time of a high-magniÐcation
peak can be predicted well in advance, a focus on high-
magniÐcation events would allow concentration of
resources on the most valuable events.

Larger telescopes that allowed rapid rescheduling could
more easily be brought into play if the time needed was
small and the potential payo† large. It might be worth
deploying special-purpose equipment to reach more sensi-
tive detection thresholds if the chances of success were
known to be large.

So, while continuous monitoring is crucial for giving the
maximum total detections, special attention should be given
to high-magniÐcation events since the cost/beneÐt ratio is
better. In addition, the high probability of detection results
in a high-efficiency experiment and allows nearly deÐnitive
statements to be made on a system-by-system basis. For
example, using each nondetection in anFigure 6, Amax[ 33
event immediately implies that there is no planet with a
mass equal to or greater than Jupiter in the lensing zone.
The high efficiency also allows statistical results to be
obtained with fewer actual measurements. Another poten-
tial advantage of high-magniÐcation events is the larger
likelihood of a measurable Ðnite source size e†ect. In these
cases, the projected transverse proper motion can be found,
and information about the lens distance (x@) can be inferred.
This can help break the degeneracies, described in &Gaudi
Gould that make determination of q and difficult.(1997), x

p
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FIG. 8.ÈSame as except for q \ 10~4, corresponding to a planet of 10 Earth masses or a Uranus-mass planet around a 0.3 star. The source isFig. 6, M
_u

*
\ 0.003.

6. LIGHT-CURVE FITTING VERSUS A PRIORI

SUBTRACTION

All probability predictions made to date have used the
deviation between the binary-lens light curve and the single-
lens light curve as the signal to be detected. In this paper, we
followed suit so as to allow comparison of our probabilities
with previous calculations. In practice, however, only the
observed binary light curve (plus noise) is known. In order
to extract the signal, one can subtract a single-lens light
curve, but one does not know a priori which single-lens
light curve to subtract. It must be found by Ðtting, and the
Ðtted single-lens light curve will try to minimize the binary
features and will reduce the signal. In order to test the size
of this e†ect, we performed a nonlinear Ðt to a single-lens
light curve and then subtracted that light curve. Examples
of the residuals from such subtractions are shown in Figure

The e†ect described above is clear. The s2 Ðtting pro-10.
cedure produces a single-lens light curve that minimizes the
largest deviations ; in s2 Ðtting it is better to miss many
points by a little than a few points by a lot. When using
threshold detection criteria, as was done here and as has

been done by previous workers, the detection probability
can be altered. In the example of the peak devi-Figure 10,
ation is above the detection threshold of 0.05 when usingP5a priori subtraction but below even the threshold of 0.04P4when using the Ðt subtraction. Thus, we counted this event
as detectable in our calculations, while it would not be
detectable by these criteria if the Ðt subtraction was used.
This e†ect holds not only for high-magniÐcation events but
for all planet detection probabilities near the detection
threshold. There may be other detection statistics that are
more robust to Ðtting, and these will be explored elsewhere

& SaÐzadeh(Griest 1998).
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FIG. 9.ÈSame as except that the source radius is corresponding to a giant source starFig. 8, u
*

\ 0.01,

APPENDIX A

PLANETARY CAUSTIC POSITIONS, THE LENSING ZONE, AND CENTRAL CAUSTIC SIZE

Consider a single pointlike lens at x \ 0 and a source at The two images occur along the lens-source line atx
s
.

x
i
\ [x

s
^ (x

s
2] 4)1@2]/2 , (A1)

where all distances are measured in units of A negative value of means the image is on the other side of the lens from theRE. x
isource.

Since a planet mass is much smaller than the primary-lens mass, its area of inÑuence is small when measured in units of RE.Thus, to Ðrst approximation the planet can have a large e†ect only when its position is near one of the main images This is(x
i
).

the lens plane point of view. From the source plane point of view, one expects the planet to have a strong e†ect when the
source comes near the planetary caustics (for example, see Thus, the strong e†ect of the source being near the planetaryFig. 1).
caustic is the same as the planet being near one of the single-lens images. The relation between planet and caustic positions
should then be the same as the relation between image and source positions, that is, the inverse of equation (A1). Thus the
caustic position is along the x-axis at

x
c
^ (x

p
2[ 1)/x

p
, (A2)

where is the position of the planet in units of This formula should work when and is not near unity. Whenx
p

RE. m
p
> m

l
x
pthe planetary inÑuence is no longer small, and when the caustics merge and take complicated shapes.m

l
B m

p
, x

p
B 1,

The ““ lensing zone ÏÏ was Ðrst discussed by & Loeb as the set of planet-lens distances where the probability ofGould (1992)
detecting the planet was high (see their Fig. 4), and it has been used with various deÐnitions by others to mean the region
where the planet is near the Einstein ring. In searching for planets, one requires as a selection criterion that the primary lens be
magniÐed by more than some amount such as This is because, observationally, microlensing is not easy to identifyAth\ 1.34.
when the peak magniÐcation is low. This selection criterion is equivalent to requiring that the source star pass within some
(projected) distance of the primary lens (e.g., for The probability of detecting the planet is proportional touth\ 1, Ath\ 1.34).
the averaged cross section of some magniÐcation contour in the source plane, which is roughly proportional to the chance
that a trajectory that comes within also hits the planetary caustic. When the caustic is near the Einstein ring theuth (x

c
B 1),

probability is high, and when the caustic is within the ring the probability is also high, but when the caustic is far(x
c
\ 1),
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FIG. 10.ÈComparison of planetary deviation light curve when using Ðtting to Ðnd the single-lens subtraction light curve and when using the known
single-lens light curve. The quantity is plotted vs. the time in units of The light line uses the known single-lens parameters ind \ (Abinary [ Asingle)/Asingle tE.the d-subtraction, while the heavy line Ðnds the best-Ðt single-lens parameters from the binary light curve. The Ðt light curve is less likely to be detected when
threshold statistics are used. Parameters are q \ 0.001, and b \ 50¡.x

p
\ 1.5, umin \ 0.05,

outside the ring the probability drops at least inversely with distance Thus, the lensing zone can be deÐned as(x
c
? 1), x

c
.

those positions for which Using equation (A2), this deÐnition corresponds to a lensing zone ofx
p

x
c
¹ 1. 0.618\ o x

p
o\

1.618, values also used by While the detection probability drops quickly outside the lensing zone, clearlyWambsganss (1997).
there will be some probability when the caustic is just outside the Einstein ring. Also, the probability near the edge of the zone
will be smaller than in the middle. Finally, since the mass of the planet determines the caustic size and region of inÑuence, the
edges of the zone will be a strong function of the mass of the planet and also of the detection criteria used.

The extent of the central caustic along the x-axis can be estimated as follows. For a single pointlike lens, the image(Fig. 2)
of the pointlike caustic is the circular Einstein ring critical curve of radius 1. When and we expect theq \m

p
/m

l
> 1 x

p
D 1,

binary system critical curve to remain nearly the same and to map onto the small central caustic (see The planetaryFig. 2).
caustics will map onto one or two small critical curves near the planet.

Restricting ourselves to the x-axis, the planet will a†ect the central caustic in two ways. First, the critical curve that crosses
the x-axis at x \ ^1 in the single-lens case will be moved slightly to x \ ^1 ] v. Second, the planet will cause the critical
curve image to map to a slightly di†erent position on the x-axis. Equation (5) says the tip of the central caustic on the x-axis
will occur at To Ðnd x, we Ðnd the critical curve using equation (6) and orx

s
\ x[ 1/x] q/(x

p
[ x). A

i
\ O,

1 [
C 1
x2] q

(x [ x
p
)2
D2\ 0 . (A3)

Let x \ 1 ] v, and solve this equation in the limit of q > 1 and v> 1 (the critical curve does not move much). This(m
p
> m

l
)

gives

v^
q

2(1 [ x
p
)2
C
1 ] q

(1[ x
p
)3
D~1

^
q

2(1 [ x
p
)2 . (A4)

Inserting x \ 1 ] v into equation (5) gives

u
c
4 x

s
^ 2v] q

x
p
[ 1

^
qx

p
(x

p
[ 1)2 . (A5)
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This is the expected shift from the origin for the caustic tip. This formula gives a very good prediction of the sizes of the
caustics shown in Note that the formula is invariant under the transformation as evidenced inFigure 2. x

p
] 1/x

p
Figure 2,

and displayed in equation (2). We expect the formula to break down when q ] 1 or x
p
] 1.
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