ASTRONOMY 386C: GALAXIES

Note – This is a draft syllabus based my previous Galaxies course. Most (but probably not all) of the material is likely to be covered. I will be bringing the course content more up to date.

1. MORPHOLOGY

- 1.1 Galaxy Classification Schemes
 - The Hubble system
 - The de Vaucouleurs system
 - The Morgan system: cD galaxies
 - Luminosity classification
- 1.2 Quantitative Morphology
 - Correlation of physical parameters with Hubble types
- 1.3 Physical Morphology
 - Galaxy components
 - Oval disks
 - Flocculent versus global spiral structure

2. LUMINOSITY FUNCTIONS

- Definitions
- The Schechter function
- Observations of the field-galaxy luminosity function
- Cluster luminosity functions
- Luminosity functions for different Hubble types
- The mix of different Hubble types: morphology-density relation
- Fraction of all light from bulge + E and disk components

3. ELLIPSOIDS: BULGES, ELLIPTICAL GALAXIES, AND GLOBULAR CLUSTERS

- 3.1 Surface Photometry
 - Review of techniques (photographic, CDD)
 - Radial brightness profiles:
 - Systematics
 - Analytic fitting functions
 - cD galaxies: properties of cD halos
 - Cores: ground-based and $H\!ST$ observations

3.2 Families of Ellipsoidal Stellar Systems

- Global and core parameter correlations
- Three kinds of stellar systems: bulges + ellipticals, Sphs, globulars
- Relationship between Sph and $\mathrm{S}+\mathrm{I}$ galaxies: Introduction

3.3 The Fundamental Plane of Elliptical Galaxies

- Global and core parameter correlations
- Scalar virial theorem; derivation of the fundamental plane equations
- Implications for galaxy formation; M/L(L)

3.4 Stellar Dynamics: Observations

- Measurement techniques:
 - $\bullet\,$ cross-correlation, Fourier quotient, Fourier correlation quotient, \ldots
- Line-of-sight velocity distributions (LOSVDs)
- Observations of rotation and velocity dispersion profiles
- Velocity anisotropy: the V/σ ϵ diagram
- Observational confirmtaion of triaxiality and anisotropy:
 - Minor-axis rotation
 - Shapes of E galaxies: statistics of apparent shapes
 - Isophote twists
 - Dust rings: implications for E shapes
- 3.5 Isophote Shapes: Boxy and Disky Es
 - Measurements of isophote shapes: a(4)/a
 - Correlations of a(4)/a with physical properties
 - Physical dichotomy of E galaxies into
 - (1) High-L, nonrotating, boxy, anisotropic Es with cuspy cores, and
 - (2) Medium- and low-L, rotating, disky, approximately isotropic and coreless Es
 - Proposed revision of the Hubble sequence: boxy $\rm E-disky~E-S0-Sa-Sb-Sc-\ldots$ Im
 - Exceptions: Boxy bulges and low-L boxy Es: origin
- 3.6 Collisionless Dynamics: Theory
 - Stellar systems are fundamentally more complicated than gases:
 - Long mean free path
 - Characteristic times: crossing time; relaxation time
 - Distribution function
 - Fundamental equations of macroscopic stellar dynamics:
 - Collisionless Boltzmann equation
 - Poisson equation
 - First moment equations = basic equations of stellar hydrodynamics:
 - The Jeans equations
 - Second moment equations: tensor virial theorem
 - Application to $V\!/\sigma$ ϵ diagram \Rightarrow anisotropy

3.7 Galaxy Models. I. $f = f(E, L_z)$

- Jeans Theorem
- Models with f = f(E): polytropes, isothermals, King models
 - Emphasize: similarities between stellar dynamical and gas case (i.e., stars)
 - $\Rightarrow \sigma^2 = kT/m_*$
 - Core mass-to-light ratios
- Models with $f = f(E, L_z)$

3.8 Globular Cluster Observations and Models

- Density distributions
- Velocity dispersion profiles
- Models with a range of stellar masses m_\ast

3.9 Stellar Orbits in Ellipsoidal Stellar Systems

- Orbits in a spherical potential
- Orbits in axisymmetric potentials: classical integrals
- Orbits in triaxial potentials

3.10 Galaxy Models. II. Galaxy = Σ weight_i orbit_i

- Schwarzschild's method; examples
- Spherical maximum entropy models; examples
- Axisymmetric maximum entropy models; examples
- 3.11 Dynamical Evolution of Ellipticals and Globular Clusters: Theory
 - Phase mixing and violent relaxation
 - Origin of the $\rho \propto r^{1/4}$ density distribution
 - Two-body encounters and relaxation
 - Heat capacity of a self-gravitating stellar system is negative
 - Core collapse: single- m_* simulations
 - Stopping core collapse via binaries
 - Gravothermal oscillations
 - Complications: range of m_* , primordial binaries, stellar evolution, physical stellar collisions, stellar coalescence, runaway stellar mergers, ...
 - External influences:
 - Tidal effects
 - Disruption of globular clusters by galactic disk shocking
 - Relation between present and primordial globular cluster population
- 3.12 Dynamical Evolution of Ellipticals and Globular Clusters: Observations
 - Post-core-collapse density distributions in globulars
 - Mass segregation
 - Stellar population gradients: blue stragglers
 - Stellar population gradients in bulges and Es \Leftarrow effects of high stellar density
- 3.13 Supermassive Black Holes (BHs) in Galactic Nuclei
 - Brief motivation: nuce lar activity (see $\S\,9)$
 - Origin of seed BHs via evolution of dense stellar systems
 - Stellar-dynamical search for BHs
 - Gas-dynamical search for BHs
 - BH demographics
 - Flashes when stars are accreted by BHs

4. DISK GALAXIES

- 4.1 Surface Photometry
 - Radial brightness profiles of bulges and disks:
 - Analytic fitting functions
 - Disk parameter corrrelations
 - Bulge-disk decomposition
 - Vertical brightness profiles of disks:
 - Analytic fitting functions
 - Thick disks
- 4.2 Bulge Dynamics
 - Evidence that some "bulges" are really disks
 - Revised bulge-to-total luminosity ratios as function of Hubble type
- 4.3 Vertical Structure of Thin Disks: Theory
 - The isothermal sheet
- 4.4 Local Stability of Disks
 - Jeans instability: velocity dispersion stabilizes small-scale perturbations
 - Rotation stabilizes large-scale perturbations
 - Complete stability: Toomre's Q parameter
 - Observations: Q in the Galactic solar neighborhood
 - Observations: Q in other galaxy disks
 - Other disk heating mechanisms:
 - Lumps: the Spitzer-Schwarzschild mechanism
 - Scattering by bars and spiral structure
 - Heating by accreted satellites
- 4.5 Spiral Structure
 - Observations of global spiral structure
 - Epicyclic theory
 - Kinematic spiral density waves
 - Dynamical spiral density waves
 - Swing amplification
 - Observational consequences and tests
 - Alternatives:
 - Self-propagating star formation and flocculent spirals
 - Tidal spirals
- 4.6 Bars
 - Observed properties of SB galaxies: bars, rings, and lenses
 - Formation and evolution of bars: n-body simulations
 - Importance of bars: secular evolution
 - Orbits in barred potentials
 - Radial transport of gas; star formation
 - Stellar-dynamical secular evolution \Leftarrow density redistribution, angular momentum transport
 - Formation or box-shaped bulges and lenses (?)

4.7 Kinematics of the Galactic Solar Neighborhood

- Standards of rest
- Effects of galactic rotation
 - Intuitive picture
 - Global formulae
 - Local approximations
- Random velocities in the solar neighborhood: velocity ellipsoid
- Asymmetric drift
- 4.8 Global Structure of the Galaxy
 - The Hubble type of the Galaxy
 - Galactic parameters
 - Thin disk (Population I)
 - Stellar halo (Population II)
 - Thick disk (Intermediate Population II)
 - Evidence that the Galaxy is barred

4.9 Warps in Galaxy Disks

- Observations (mostly HI)
- The problem: formation and maintenance of warps
- The solution: triaxial dark halos?

5. STELLAR POPULATIONS IN GALAXIES

- 5.1 Stellar Populations at $z\simeq 0$
 - History of the discovery of stellar populations in the Galaxy
 - Observations of disks
 - Star formation history of disks
 - Observations of elliptical galaxies
 - Color and line-strength gradients
 - Degeneracy between metallicity and age
 - $\bullet\,$ Current problems: evidence that low-LEs have a variety of ages
- 5.2 Stellar populations in high-redshift ellipticals
 - Line strengths and fundamental plane correlations as function of $z{:}$
 - Evidence that giant ellipticals are old
 - Star formation history of ellipticals

6. DWARF GALAXIES

- 6.1 Introduction: Importance of low-L galaxies
 - The fundamental observed property of low-L galaxies is low baryon density
 - The fundamental theoretical explanation is baryonic blowout by winds
 - Implication: dwarf galaxies have an unusually large dark matter fraction
- 6.2 Observed properties of low-L and low-surface-brightness galaxies
 - Fundamental plane parameter correlations
 - Selection effects: implications for correlations, L function
 - Icebergs and crouching giants: Malin 1 and relatives

6.3 Galaxy Formation. I. Low-Luminosity Galaxies

- Baryonic blowout via galactic winds
 - Recall similarity of dwarf S + I and dSph galaxies
 - Saito-Dekel-Silk mechanism: blowout of baryons by galactic winds
 - Expansion of a stellar system after mass loss
 - Observational evidence for mass loss via galactic winds
 - Stochastic starbursts in dwarf galaxies
- Ram-pressure stripping
 - Evidence for and against
- Other processes: revival of dI galaxies by gas accretion
- Bombproof evidence that dI galaxies evolve into dSphs:
 - The age distribution of stars in dSph galaxies

7. DARK MATTER

- 7.1 Historical Introduction
 - Dark matter in the Galactic disk (Oort)
 - Dark matter in the Coma cluster (Zwicky)
 - Stability of cold disks *versus* bars (Ostriker & Peebles)
- 7.2 Observational Evidence for Dark Matter
 - HI rotation curves
 - Velocity dispersions in dSph galaxies
 - Satellites of our Galaxy
 - X-ray gas in galaxies and clusters: hydrostatic equilibrium of a hot gas
 - Velocity dispersions of clusters of galaxies
 - Gravitational lenses
 - Large-scale velocity fields
- 7.3 Regularities in DM Halo Properties
 - Conspiracy between luminous and dark matter to make flat $V(\boldsymbol{r})$
 - Parameter correlations
 - Rotation curve decomposition into visible and dark matter components
 - Fundamental plane for dark matter halos
 - Evidence for baryonic compression of dark matter halos
 - Implications for galaxy formation

7.4 What is Dark Matter?

- MOND: Modified Newtonian Dynamics?
- Disk dark matter is baryonic: it dissipated
- Primordial nucleosynthesis constraints on baryonic dark matter
- Baryonic halos?
 - $\bullet\,$ Things that won't work: snowballs, M dwarfs, white dwarfs, neutron stars
 - $\bullet\,$ Things that might work: brown dwarfs, black holes of mass $10^{5\pm1}~M_{\odot}$
- Gravitational microlensing surveys
- Hot, warm, and cold elementary particles $\hat{\alpha}$
- Constraints on neutrino dark matter from dwarf galaxies
- Direct detection of particle dark matter

8. GALAXY FORMATION

- Note: The origin and early evolution of fluctuations belongs in the Cosmology course. Some discussion of hierarchical clustering and the formation of large-scale structure is inevitable here, because the study of galaxy formation cannot be removed from its cosmological context. Basically, the aim here is to discuss galaxy formation starting at a time when individual objects are well separated from the expansion of the universe.
- 8.1 Introduction
 - Eggen, Lynden-Bell, & Sandage (1962)
 - Hydrodynamic collapse simulations
- 8.2 Galaxy Mergers: Theory
 - Dynamical friction and orbital decay
 - Chandrasekhar's formula
 - Implications:
 - Toomre's hypothesis that all bulges and ellipticals are merger remnants
 - Galaxy formation must be studied in the context of large-scale structure formation
 - Conservation of phase space density
- 8.3 Simulations of Hierarchical Clustering and Galaxy Formation
 - Cold dark matter simulations
 - Properties of the galaxies that form
 - Comparison with observations: successes and failures
 - Dissipationless simulations of group and binary mergers
 - Properties of the galaxies that form
 - Comparison with observations: successes and failures
 - The need for dissipation
 - Dissipational simulations of group and binary mergers
 - Properties of the galaxies that form
 - Comparison with observations: successes and failures
- 8.4 Observational Constraints on Galaxy Formation
 - Observations of mergers in progress
 - Merger sequence from close binary galaxies \rightarrow violence \rightarrow remnants
 - Starbursts: IRAS galaxies
 - Possible connection between ultraluminous IRAS galaxies and quasars
 - Recognizing old mergers: tails, shells, and other fine structure
 - Recognizing completed mergers: embedded stellar disks
 - Photometric signatures
 - Kinematic signatures
 - Small accretion events
 - Not every elliptical with fine structure needs to be a major merger remnant

8.5 Tentative Verdict: Mergers *versus* Dissipative Collapse

- Strengths and weaknesses of the merger picture
- Evidence from high-z galaxies
- Bottom line: both mergers and dissipative collapse were important

8.6 Physical Processes During Galaxy Formation: Origin of the Fundamental Plane

- Dissipation: cooling times and galactic scales
- Complications: energy input during starbursts, etc.
- Formation of ellipticals
- Rotation of disk galaxies
- Late infall of cold gas
- Ongoing problems
- Connections with observations at high \boldsymbol{z}

9. ACTIVE GALACTIC NUCLEI

9.1 Taxonomy

- Radio galaxies
- Quasars and BL Lac objects
- Seyfert 1 galaxies
- Seyfert 2 galaxies
- LINERs

9.2 Demographics

- Number densities compared to galaxy densities
- Evidence for evolution
- Peak in quasar densities at $z \simeq 2 3$.

9.3 Emission-Line Physics

- Hydrogen spectrum
- Forbidden lines
- Models of the broad- and narrow-line regions

9.4 Continuum Radiation

- Thermal components; dust scattering
- Nonthermal radiation: synchrotron radiation
- Jets: properties; relativistic beaming
- Gamma rays
- 9.5 The Unified Model of Nuclear Activity in Galaxies

9.6 Power Sources

- Starbursts: pro and con
- Black holes: pro and con
- The critical observations that imply black hole engines
- The Galactic center