Agenda for Ast 309N, Oct. 23

» Evolution of low-mass stars, continued

» Synthesis of the elements in stars

* Video excerpt, Tyson’s “Forged in the Stars”

» Planetary Nebulae and White Dwarfs

* Participation card
* Reading:

— Kaler, pp. 145-155 (today), ch.6 (Thursday)
— Wheeler, ch. 6.1 — 6.5 (Thursday)
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Ast 309N (47760)

Core Helium-Burning Stage

When He fusion begins in the core, the star becomes
smaller and hotter - moves onto what we call the
‘horizontal branch.’
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helium fusing into
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The Horizontal Branch in Clusters
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Old star clusters
(globular clusters)
show low-mass
stars in late stages
of their evolution

Helium-burning
stars are found on a
horizontal branch
that extends quite
far to the blue of
the red giants

He-Core Exhaustion: The Asymptotic
Giant Branch (*AGB” Star)

When all the He is used up in the core, the core
begins contracting again, which heats it up, causing
He fusion to occur in a shell above the core.

This is the “double shell-burning” phase, which has
an inner He-burning and and outer H-burning shell.

This is called the “Asymptotic Giant Branch.” The
star becomes even cooler, larger (in diameter),
and more luminous. Its path in the HR Diagram
asymptotically approaches the red giant branch.
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Second Red Giant Phase: AGB or Interior of an AGB Giant Star
Double Shell-Burning Star
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AGB Giants as Variable Stars Dust Formation and Mass Loss
LPV - omicron Cet (Mira) Semiregular - UMa
20 ° * The outer layers of the AGB star are sufficiently cool
§ o J\/\f\ %e and clumpy that certain elements start condensing
2 100 ;. into small solid particles called “dust grains.”
= o 20 L o « Stars in which C > O produce carbon dust of various

forms: graphite, soot, amorphous carbon.
AGB stars have a tendency to pulsate: they alternately

) : * Stars in which C < O make silicate flakes (like rocks
swell up and contract with periods of | — 2 years.

on the Earth).

The most famous example is Mira, the “wonderful.” At * These will eventually be expelled into space, where
maximum brightness it can be seen with the naked eye they cause extinction and reddening of starlight; they
but at minimum it fades below visibility. also form the “seeds” of future planets.
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Stellar Winds and Mass Loss

* The outer layers swell and contract, and mass starts
leaking away in a flow called a “stellar wind.”

* Once dust forms, the flow becomes a “superwind.”

* Example: R Sculptoris, imaged with the new ALMA
telescope http://www.eso.org/public/news/eso 1239
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IRC+10216: A C-rich AGB Star

Dust Shells in Scattered Light
(Mauron & Huggins 1999)
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The AGB giant phase
ends when most of the
envelope is removed,
revealing the hotter
layers deep in the star’s
interior. Everything
except the core is
expelled in an outflow,
at first in a wind, later
as a planetary nebula.

The White Dwarf in the AGB Giant

extending out

The core (composed

/i":m? of C and O made by

miles

The structure of a star in the helium-burning phase
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earlier reactions)
contracts to high
density, essentially
building a white dwarf
in the middle of the
star. The core is
supported by electron
degeneracy pressure,
which prevents it from
contracting any further.




From Red Giant to White Dwarf

The nebula of hot gas is
the cast-off outer layers of
the former AGB star,
ionized by the central star

The small, hot central star
is a “pre-white dwarf,”
which is the nearly
degenerate stellar core

The collapsing Carbon core becomes a White Dwarf
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Planetary Nebula Morphologies
What shape would you expect for a planetary nebula?

Many have very different shapes,
such as “butterfly” morphologies.
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Gallery of Planetary Nebulae

Cat s Eye Nebula Twin Jet Nebula

1C 4406

Henize
2-138
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Overview: Life Story of a Low-Mass Star

I. Main Sequence: H core-
burning:H — He in core

2. Red Giant: H shell-burning:
H — He outside the He core

3. He Core Burning:He — C in
the core, H — He in shell

7. Double Shell Burning:
H and He both fuse in shells,
core becomes degenerate

5. Planetary Nebula lifts off,
leaves white dwarf behind
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Two Views of the Elements

The “Main Highway” of H fusion (p-p I)

Hydrogen Fusion by the Proton-Proton Chain

Step 1
Two protons fuse to make
a deuterium nucleus (1
proton and 1 neutron).
This step occurs twice in
the overall reaction.

Step 2
The deuterium nucleus
and a proton fuse to make
a nucleus of helium-3 (2
protons, 1 neutron). This
step also occurs twice in

Step 3
Two helium-3 nuclei fuse
to form helium-4 (2
protons, 2 neutrons),
releasing two excess
protons in the process.
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Some elements are more common than others.
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The 10 most abundant elements:
#1Hydrogen (H)  #5Neon(Ne)  #8 Magnesium (Mg)
#2Helium (He)  #6 Nitrogen (N)  #9 Silicon (Si)
#30xygen (0)  #7Iron (Fe) #10 Sulfur (S)
#4 Carbon (C)
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the overall reaction.
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Alternate H-fusion method: CNO Cycle
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* Main Sequence stars of
more than 1.5 Mg fuse H
into He using carbon as a
catalyst, instead of through
the familiar p-p reaction
that happens in the Sun

* Higher core temperature
enables nuclei to overcome
the electric repulsion
between the nuclei

What else does this require,
besides a high temperature?

He Fusion Reactions

The next step, as in lower-mass stars, is the fusion of
He into C (and sometimes on to O):

The Triple Alpha Process
(Helium Fusion) (gamma photon)
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Later-Stage Nuclear Reactions in Stars

When a star with high

enough mass exhausts Holur-captrs resctons .
H H f | T2¢ 11:,? 8n) %0 (1::':%,.) 2ne 112P,N:g2n)
its He fuel: N -

. L / / /
It has sufficient gravitational
& P e P

energy to reach 6 x 108 K. e e e

Other reactions

This enables fusion reactions 12

~
charged nuclei to occur. a ,@ a ,& ‘a .
The nuclei involved are . o L~
mostly multiples of He: e

O = Ne=Mg=Si= Fe
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Synthesis of the Elements in Stars
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S common middle-
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as O, Mg, Si, S, Fe

silicon fusion
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Iron is a “Dead End” for Standard
Fusion (Charged-Nuclei Reactions)

/ogen This chain of reactions ends with Fe.
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Products of Stellar Nucleosynthesis
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Nuclei beyond the Fe-peak are made by
neutron-capture reactions
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Two Neutron-Capture Reactions: fast vs. slow

“ ”
* In the slow or “s-process,

neutrons are captured one ata

time, followed by a “beta decay” which changes the element

+ The rapid or “r-process” floods the pre-existing nuclei
(mainly Fe) with neutrons, making neutron-rich isotopes
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Trans-lron Elements in the Solar System

About half the
nuclei heavier
than iron in the
Solar System
came from
AGB stars, the
other half from
supernovae
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Stellar Recycling and Element Enrichment

Stars make heavy elements.

They send them into space in:

* stellar winds (from red giants)

* planetary nebulae

* supernova explosions

Lower-mass stars make
C, N, He, and some
trans-iron elements.

High-mass stars make O
and other “alpha” nuclei,
iron & heavier elements.




The Discovery of White Dwarfs White Dwarfs: Stellar Embers

Wobbly
path . .
& * In 1844, Bessel noticed the strange motions « White dwarfs are the lefcover
N of a couple of the brightest stars in the sky: cores of (lower-mass) stars
< é’ ‘ Sirius and Procyon. that have finished their Main
};/ * This was an early example of “dark matter’: Sequence and giant phases
Sirlus

something that had gravity but no light.
. * Telescope maker Alvan Clark was able to
\\q . resolve Sirius A and B; dim but not dark!

* Electron degeneracy pressure
supports white dwarfs against

WHITE DWARF STAR gravity: they cannot contract

ATMOSPHERE=100 YARDS
T=50900° \ ( Do

seceueaare cone\\ : * They no longer generate

* Sirius A is 800 X brighter than B, yet L
energy by fusion reactions

they have the same temperature.

NOW DEGENERATE SHELL
10OMILES THICK: £ ¥
(Few ececTRONS) A .

* Sirius B is a “white dwarf.” So they just sit there, radiate,

and cool, but cannot contract

* This discovery was 150 years ago! due to degeneracy pressure

White Dwarfs: Structure White Dwarfs: Surface Layers
* The electrons are Kaler calls these “weird
degenerate and L N%m.mm atmospheres.” Spectral

support the star. ocaenerare cone
MATRIX OF NUCLE!
(ELECTRONS MOVE THRU THER)

Relative [/,

types DA (strong H lines),

. DBs show He lines, etc.
¢ The nuclei are not ’
NON DEGENERATE SHELL

degenerate, so they [Eeidimuy
they lose thermal
energy as the star
radiates away its

H(f present)
#0060 400

A (A)

Unusual conditions allow a new effect

stored heat. to operate: gravitational “settling.”
Because of the strong surface gravity
Eventually, the nuclei “crystallize” — the white and calm conditions, heavier species

. . . . H i i Cross Section of a Typical
dwarf really is “like a diamond in the sky” actually sink towards the interior *White Dart |




White Dwarf Inverse Mass-Radius Relation

1 'OMSUIA 1 BMSMW

Earth white dwarf white dwarf
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White dwarfs of | solar mass are about the
same size as the Earth, but degenerate stars
obey an inverse mass-radius relation: thus,
higher-mass white dwarfs are actually smaller.

Maximum Mass of a White Dwarf

Quantum mechanics says that electrons must move
faster as they are squeezed into a very small space.

As a white dwarf s mass approaches |.4M, its
electrons must move at nearly the speed of light.

Because nothing can move faster than light, a white
dwarf cannot be more massive than 1.4Mg,.

This is the maximum mass that a white dwarf can
have, and is called the Chandrasekhar limit.

Maximum Mass of a White Dwarf
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White Dwarf Cooling Tracks
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This summarizes the
evolutionary track that
eventually produced a
white dwarf.

Once the rest of the
star’ s mass has been
removed, the white
dwarf cools off and
grows dimmer with
time, sliding down along
a line of constant radius
in the H-R diagram.




