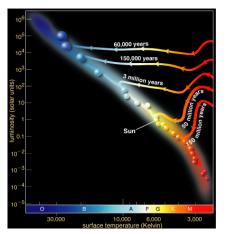


The Pre-Main Sequence (Protostar) Phase

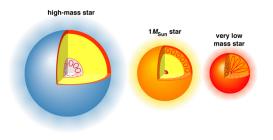
- As a contracting protostar heats up, thermal energy is radiated away from the surface, enabling it to continue collapsing.
 - at first, energy is transported to surface via **convection**
 - as core gets hotter, transport via radiation takes over
- Due to conservation of angular momentum, the protostar spins faster; it must get rid of some of this angular momentum, or it will tear itself apart
 - Most of the angular momentum goes into the spinning disk
 - Outflows may develop, in the form of "jets" (these are seen)
 - The protostar may break up into two stars (a binary system)
- Fusion reactions begin when core reaches 10⁷ K.


Ast 309N (47760)

The Internal Structure of Stars

- The life of any star can be described as a battle between gravity (inwards) vs. pressure (outwards)
- Gravity wants everything to collapse to the center.
- Pressure resists gravity and holds up the star.
 - in most stars it is *thermal pressure* that does this
 - in special cases, it is degeneracy (quantum) pressure
- Remember Newton's Law of Gravity
 - the amount of gravitational force depends on the mass
 - gravitational potential energy is turned into heat as a star collapses, enabling fusion reactions to begin

Ast 309N (47760)

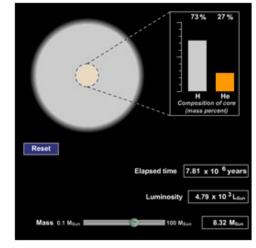

Arrival on the Main Sequence

- The mass of the protostar determines:
 - how long the protostar phase will last (higher-mass stars do everything faster)
 - where the newborn star lands on the Main Sequence
 - what spectral type the star will have on the main sequence

Ast 309N (47760)

The Structure of Main Sequence Stars

Main Sequence stars of different masses have different arrangements of radiation and convection zones in their interiors.

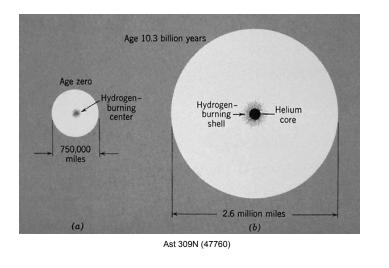

Copyright @ Addison Wesley

These stars stay on the Main Sequence until they use up their fuel

More massive stars *start out* with more fuel, but because they are more luminous, they use up their fuel faster.

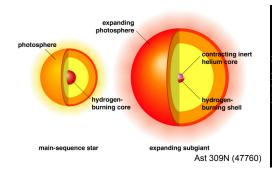
Ast 309N (47760)

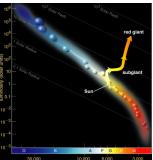
Stellar Aging ("Evolution")

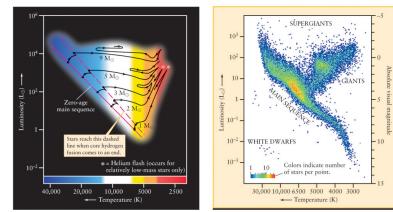


A star remains on the Main Sequence as long as it can fuse hydrogen into helium in its core

Things change only when it has used up ("exhausted") all the H in its core, & the star leaves the Main Sequence.

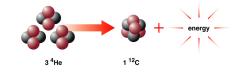

Ast 309N (47760)


The Main Sequence vs. Red Giant Sun


Leaving the Main Sequence

- The core begins to contract
 - the region just above the core heats up & H fusion begins there; this is called a "hydrogen-burning shell"
 - the higher pressure in this hot region pushes outward, so the outer layers of the star expand. It becomes a red giant.

Evolution off the Main Sequence

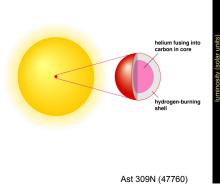


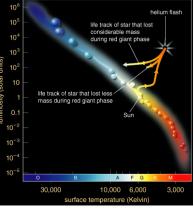
(a) Post-main-sequence evolutionary tracks of five stars with different mass (b) H-R diagram of 20,853 stars—note the width of the main sequence Ast 309N (47760)

Helium "Burning" (Fusion)

The He core contracts until it heats up to 10^8 K

- He fusion begins (3 He \Rightarrow | C, + He \Rightarrow O)
- sometimes called the "triple- α process"


The star, now fusing He in its core, is again stable.


- gravity vs. pressure from He fusion reactions
- red giants create and release most of the Carbon from which organic molecules (and life) are made

Ast 309N (47760)

Core Helium-Burning Stage

When He fusion begins in the core, the star becomes smaller and hotter - moves onto what we call the 'horizontal branch.'

