"You are a Star!"

Do this in small groups. Estimate the "luminosity" of one member of the group: the total energy they are radiating *per second*. Which of the following values -(a), (b), (c), or (d) - is it closest to?

L = Surface Area (m²) x Energy per unit area (W/m²)

Hint: Assume that the energy per unit area (second term) = 500 Watts (this corresponds to $T = 92^{\circ} F = 306.5 \text{ K}$), so you just have to estimate surface area in square meters; show your calculations!

- (a) 15 Watts
- (b) 150 Watts
- (c) 1500 Watts = 1.5 kW
- (d) 15,000 Watts = 15 kW

9/18/12

Ast 309N (47760)

The luminosity of a person

I had already chosen T = 92° F = 306.5 K, and calculated the second term, σ T⁴ = 500 Watts.

That leaves the job of estimating the surface area of a person. How to do this?

-Most groups chose a value by comparing with the 1 m^2 box drawn on the board, or worked backwards from the listed choices.

-You can approximate a person as a cylinder, of height about 1.8 m and cross-section 1.5 m (allowing for arms and legs, etc.).

9/18/12

3

1

The luminosity of a thermal emitter

The total power radiated by a thermal emitter is: (Surface Area) x (Energy emitted per unit area)

If the object is a sphere, for example a star, then Surface Area = $4\pi R^2$, where R is the radius. If the whole surface is at one temperature T,

Energy per unit area = σT^4

9/18/12

Ast 309N (47760)

Responses: Statistics

Surface Area x Energy per unit area = Total Power

 $m^2 \times 500 \text{ Watts/m}^2 = \text{choices (a)} - (d)$

Surface Area	Power, choice from list		# groups choosing this value (%)	
3 m ²	1500 W	(c)	23 (49%)	
2.5 m ²	1250 W	(c)	7 (15%)	
I.8 – 2 m ²	≈ 1000 W	(c)	II (23%)	
0.5 – 1 m ²	250 – 500	(b)	3 (6%)	
No value given	15,000	(d)	3 (6%)	

9/18/12

Ast 309N (47760)

2

Responses: Reasoning and Comments

- Several groups failed to choose any of the options.
- Some groups did not explain their reasoning, but just said the surface area was "around 2 – 3 m²."
- A few groups mixed up this question with the previous example: "(d) because the surface area of a star is very large...", I didn't ask about a star!
- Others explicitly wrote a number x 10²⁶ Watts in their calculations, which is *not relevant*!!
- One group wrote: Surface area = 1 yard x 1.5 yds.
 A yard is not a meter, although they are close, but you can't mix different units in the same equation!

Errors and Misunderstandings

- Some sloppy math: 3 x 500 = 150
- Substituting 92 for T: $(\sigma T^4) \neq (500 \times 92^4) \parallel$ T must be in **Kelvins**, and σ is not 500 W!
- Treating a person as a (too large!) sphere: $4\pi R^2 = 4\pi (2)^2$; claimed to be 3, is actually \approx 50! (scientists' joke, the "spherical cow" realized)
- Random substitutions: $4\pi R^2 \times 500 = 4\pi (1500)^2 \times 500 = 3.9 \times 10^{26}$??
- Inverting the ratio: Surface area = 500 W/m 2 ÷ 150 W

9/18/12	Ast 309N (47760)	5	9/18/12	Ast 309N (47760)	6