## Group Index Card, 11/20

Consider the acceleration of gravity on an object at equivalent distances from stars of different kinds:

I. An object located I A.U. (Earth-Sun distance) from a I  $M_{\odot}$  Main Sequence star. Now replace the star with a I  $M_{\odot}$  white dwarf. What happens to the gravity? What if you replace it with a I  $M_{\odot}$  neutron star?

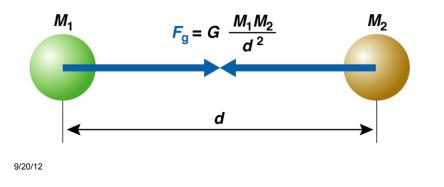
2. Now place the object at the surface of each star. How does the gravitational acceleration change as you go from a Main Sequence star to a white dwarf ( $10^{-2}$  R<sub> $\odot$ </sub>), and a neutron star ( $10^{-4}$  R<sub> $\odot$ </sub>)? Explain your reasoning. If calculating numbers is too hard, just state the expected change in qualitative terms.

11/20/12

11/20/12

Ast 309N (47760)

#### Strength of Gravity at I A.U.


Three objects, all with the same mass ( =  $I M_{\odot}$ ): Main Sequence star, white dwarf, neutron star. The object feeling the gravity is at I A.U. in each case.

- "Gravity does not change. You are still the same distance from the center of mass." **Right!**
- "...the same because the mass and distance are the same in all three cases."
- The key here is what we mean by "distance." It is the distance between the centers, not the surfaces, of the two objects interacting gravitationally.

#### How Gravity Behaves

Its strength is directly proportional to both of the masses, and inversely proportional to the square of the distance between the *centers* of the two objects.

The **acceleration** of  $M_1$  due to  $M_2$  is this force divided by it own mass,  $M_1$ , so it is given by  $a_g = GM_2/d^2$ .



#### Confusions: Gravity at I A.U.

Half the class thought that gravity increases when you replace the Main Sequence star with a white dwarf of the same mass & increases further if it's a neutron star.

- "The pull of gravity increases with each new, denser star." Density is not relevant when the object is located far away from the star.
- "When you replace the MS star with a WD, the gravity decreases because the distance increases." The distance from the center is the same: I A.U.
- "The acceleration of gravity increases as the object increases in radius." No. Only if the mass increases.

3

1

11/20/12

### Strength of Gravity at the Surface

2. Now we are talking about an object at the *surface* of each star. So the *distance* changes, because these objects have surfaces of smaller radius which contain the mass:  $10^{-2} R_{\odot}$  for the WD,  $10^{-4} R_{\odot}$  for the NS.

- "[The acceleration] increases because the surface is closer to the center of mass."
- "The gravity becomes larger since distance comes into effect... [is smaller], decreasing the denominator in the equation for gravity."
- "acceleration is stronger because the surface is closer to the center of mass."

| 11/20/12 | Ast 309N (47760) | 5 |
|----------|------------------|---|
|          |                  |   |

# Confusions: Surface Gravity

Most said that the gravity increases, but relatively few groups correctly explained why. Other confusions:

- "Gravitational acceleration gets slower since their masses are lower." The masses are the same in all cases; the numbers given were for the radii.
- "Gravity becomes weaker as the star mass increases." This is literally wrong, and the mass didn't increase.
- "Gravitational acceleration could decrease because as the radius decreases, the orbit could get larger." The other object is not in orbit, it's at the star's surface.

Ast 309N (47760)