
November 3, 2010

Reading: Chapter 10, Sections 10.1-10.4, 10.9.

Astronomy in the News? Wheeler blurb in Astronomy Magazine

Pic of the Day – "Necklace" nebula in Saggita – binary star planetary nebula

Circumstantial arguments for presence of black hole in a binary system:

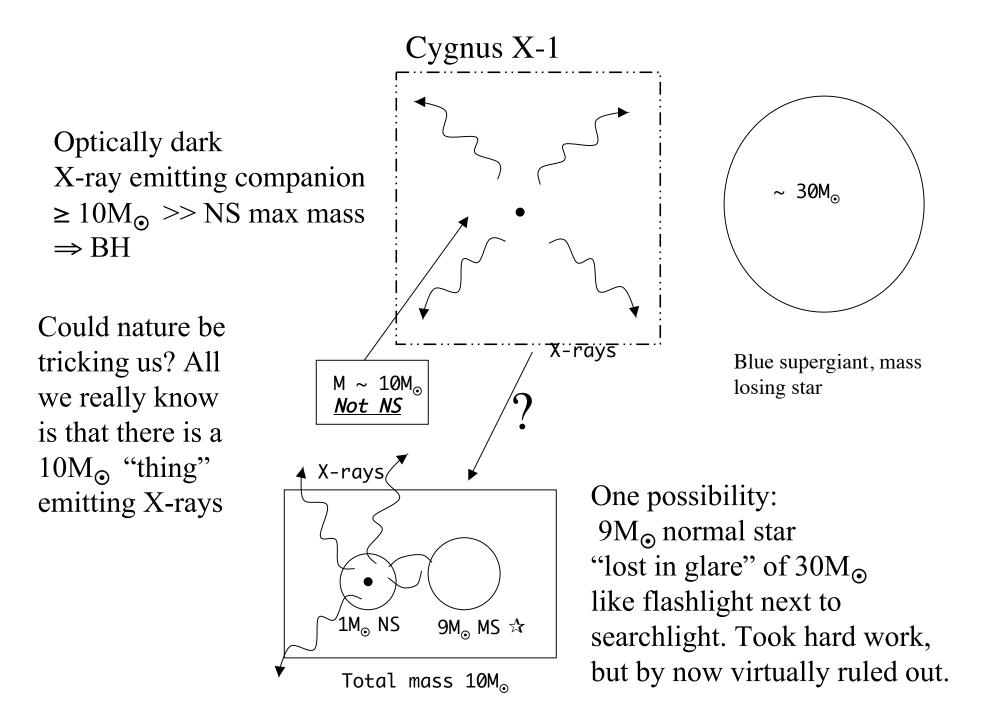
Only neutron stars and black holes have the high gravity necessary for intense X-rays.

Use Kepler's laws to measure the total mass of the system, astronomy to determine the mass of the mass-losing star, subtract to get mass of "unseen" companion emitting X-rays.

Maximum mass of neutron star is ~ 2 solar masses

Intense X-ray source with mass exceeding 2 solar masses is, by a process of elimination, a candidate black hole. There are about 20 binary star black hole candidates in our Galaxy and in the Large Magellanic Cloud (near enough to detect the X-rays) that have masses measured to be greater than 3 solar masses, and hence too massive to be a neutron star.

There are another 25 binary star black hole candidates with simlar X-ray properties, but no measured mass.

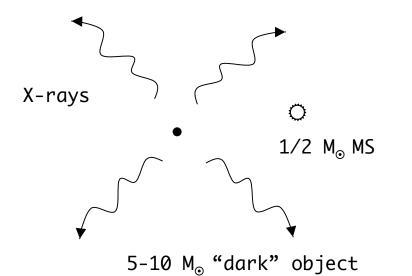

Cygnus X-1

First X-ray source discovered in the direction of the constellation Cygnus.

Discovered in 1970's by Uhuru Satellite (Swahili for Freedom).

First and still most famous stellar-mass binary black hole candidate.

Can't see this system with the naked eye, but can find constellation Cygnus - look for it for sky watch!


Expect only two or three systems like Cygnus X-1 in our Galaxy.

Bright, massive, short-lived companion

Maybe only one, and we found it!

Surprisingly, most binary black hole candidates have small mass main sequence companions, typically $\sim 1/2$ solar mass.

Observe ~45 such systems and guess there may be ~1000 in the Galaxy

For systems with small mass companions cannot hide a 3rd star in the system

 \Rightarrow best black hole candidates.

Evidence still circumstantial but virtual proof of black hole

Candidates in the directions of Sagittarius, Ursa Majoris, Perseus, Scorpius, Ophiuchus, Vulpecula, Monoceros, Lupus, Cygnus (2) (Find and observe the constellations for extra credit)

AO620-00 = Nova Mon 1975 = V616 Monocerotis - one of the first and best studied with a small mass companion, black hole about 5 solar masses.

V404 Cygni - somewhat evolved companion, but one of the best cases for a black hole with "dark" mass of about 12 solar masses.

Two candidates in the Large Magellanic Cloud: LMC X-1, LMC X-3

Total number of such systems known, about 45.

Not sure how these binary systems form.

Would have expected massive stars that can make black holes in core collapse to have massive companions, like Cygnus X-1.

Need to have black hole very close to small mass companion, current separation smaller than size of the star that made the black hole.

Possibilities:

Black hole progenitor swallows small mass companion while a red giant?

Companion forms from left-overs of collapse that formed the black hole?

Proving Black Holes

Astronomers search for ways to directly determine that the dark object producing X-rays is a black hole, not a neutron star.

How would you identify a black hole of 1 solar mass?

Evidence that in some circumstances black holes, but not neutron stars, can produce very hot, rarified inner accretion regions, making gamma-rays, but few X-rays.

This is evidence that the object has **no surface**.

One Minute Exam

The best candidate for a binary star system with black hole is:

• One with a 30 solar mass ordinary star

One with a 1/2 solar mass ordinary star

One with two black holes in orbit

Cygnus X-1

Goal:

To understand how we have discovered supermassive black holes and how they affect galaxy formation and evolution.

Supermassive Black Holes

Long suspected in quasars, active galactic nuclei: huge power from small volume, billion solar mass black hole could do it.

More recently, proof that many (even most! John Kormendy, UT) ordinary galaxies also have a supermassive black hole in their centers (dead quasar).

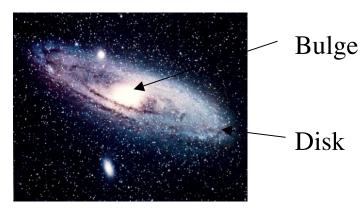
Again, do not yet see a "dark spot," but use Kepler's Laws, motion of many stars, gas \Rightarrow orbital period, separation

3.7 million M_{\odot} black hole in our Galaxy [UCLA link - movie]

Center of Milky Way Galaxy in direction of constellation Sagittarius – (find Sagittarius for sky watch)

Up to billion M_{\odot} black holes in quasars.

Jet from billion M_{\odot} black hole in center of M87, large elliptical galaxy in the Virgo cluster (find Virgo!)


Surprising discovery:

It was long thought that supermassive black holes were somewhat incidental to galaxies,

Formed of matter that somehow drained into the center of the galaxy, so galaxy could have large mass or small mass black hole depending on circumstances.

Recent work by Karl Gebhardt (UT) and others has shown that even stars so far from the center that they cannot possibly feel the gravity of the black hole *now* are moving in such a way that *the larger the mass black hole, the higher the speed of the stars!*

Andromeda M31

