AST 301
Introduction to Astronomy

John Lacy
RLM 16.332
471-1469
lacy@astro.as.utexas.edu

Bohua Li
RLM 16.212
471-8443
bohuali@astro.as.utexas.edu

Myoungwon Jeon
RLM 16.216
471-0445
myjeon@astro.as.utexas.edu

web site: www.as.utexas.edu
Go to Department of Astronomy courses,
AST 301 (Lacy), course website
Topics for this week

Describe the reactions in the proton-proton chain.
How does Einstein’s equation, $E = mc^2$, help explain how nuclear reactions generate energy?
Describe how neutrinos allow us to observe the interior of the Sun, and say what was found.
Describe the ideas of thermal and hydrostatic equilibrium for a star.
How are flux (or apparent brightness), luminosity, and distance of a star related?
How do we measure flux and distance of a star?
How do we measure temperatures and masses of stars?
How do we use the Hertzsprung-Russell diagram to make sense of the temperatures and luminosities of stars?
Energy from the Sun

The Sun radiates tremendous amount of energy from its surface. Where does this energy come from?

Nuclear fusion inside the Sun generates energy while fusing hydrogen nuclei to make helium nuclei.

The reaction chain is referred to as the proton-proton chain because the first reaction is the fusion of two protons.

The best way to explain how nuclear reactions generate energy is to note that a helium atom has less mass than the 4 hydrogen atoms that were fused to make it.

Einstein’s famous equation, $E = mc^2$, says that mass can be converted into energy (or energy into mass) and to calculate the energy generated by destroying a mass m you multiply m by the square of the speed of light.
Four forces

To understand nuclear fusion, we need to know about the interactions between the particles in an atomic nucleus. We already know something about gravity and electrical forces. There are two more forces that matter. The strong, or nuclear, force is an attraction between the particles in a nucleus (protons and neutrons). It is stronger than the electrical force, but only acts at short distances.

The weak interaction allows one type of particle to become another. A neutron can decay into a proton, an electron and a neutrino. Energy is released by this reaction. Or with some energy put in, a proton can become a neutron and a positron.
Conservation laws

The four forces cannot change several quantities, which must be the same before and after a reaction. We say these quantities are conserved. (Is energy conserved in nuclear reactions?)

<table>
<thead>
<tr>
<th></th>
<th>electrical charge</th>
<th>lepton number</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>neutron</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>electron</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>positron</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>photon</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>neutrino</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>anti-neutrino</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
Masses and Energies

<table>
<thead>
<tr>
<th>Particle</th>
<th>Symbol</th>
<th>Mass (kg)</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron</td>
<td>e^-</td>
<td>9\times10^{-31}</td>
<td>511</td>
</tr>
<tr>
<td>proton</td>
<td>p^+</td>
<td>1836</td>
<td>938.3</td>
</tr>
<tr>
<td>neutron</td>
<td>n</td>
<td>1839</td>
<td>939.6</td>
</tr>
<tr>
<td>deuteron</td>
<td>d^+</td>
<td>3669</td>
<td>1875</td>
</tr>
<tr>
<td>helium</td>
<td>α^{++}</td>
<td>7292</td>
<td>3727</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{n} & \rightarrow \text{p}^+ + \text{e}^- + \bar{\nu} + 0.8 \text{ MeV} \\
\text{n} + \nu & \rightarrow \text{p}^+ + \text{e}^- + 0.8 \text{ MeV} \\
\text{p}^+ & \rightarrow \text{n} + \text{e}^+ + \nu - 1.8 \text{ MeV} \\
\text{p}^+ + \text{p}^+ & \rightarrow \text{p}^+ + \text{n} + \text{e}^+ + \nu - 1.8 \text{ MeV} \rightarrow \text{d}^+ + \text{e}^+ + \nu + 1.4 \text{ MeV} \\
4\text{p}^+ & \rightarrow \alpha^{++} + 2\text{e}^+ + 2\nu + 26.6 \text{ MeV}
\end{align*}
\]
The rate of fusion

If we know the rate of energy generation, and the amount of energy generated for each helium nucleus made, we can calculate the rate at which helium nuclei are made.

helium nuclei made / second

\[
\frac{\text{energy made}}{\text{helium nucleus made}} = \frac{\text{energy made}}{\text{second}}
\]

= ---

energy made / helium nucleus made
Quiz

A 100 Watt light bulb uses 100 Joules (10^2 J) of electrical energy each second. (1 Watt = 1 Joule / second)

A typical photon from a light bulb has about 10^{-19} J of energy.

How many photons does a 100 W light bulb emit each second?

A. 10^{-21}
B. 10^{-17}
C. 10^{17}
D. 10^{21}
Fusion of hydrogen to make helium

1 hydrogen atom: \(1.673 \times 10^{-27}\) kg
4 hydrogen atoms: \(6.693 \times 10^{-27}\) kg
1 helium atom: \(6.646 \times 10^{-27}\) kg

Mass lost: \(0.047 \times 10^{-27}\) kg (0.7% of \(6.693\times10^{-27}\))

Energy created = Mass lost \(\times c^2\):
\[4.29 \times 10^{-12}\] J / He atom formed

Total power (energy radiated per second) from Sun:
\[3.90 \times 10^{26}\] J / s

Helium atoms formed / s = (Energy / s) / (Energy / He atom):
\[9.09 \times 10^{37}\] He atoms formed / s

Mass destroyed / s = (Energy generated / s) / \(c^2\):
\[4.33 \times 10^9\] kg / s = \(4.33 \times 10^6\) tonnes / s
Is it ‘Just a Theory’?

Fusion only occurs very close to the center of the Sun. How can we be sure this is how the Sun generates energy?

The neutrinos created when protons became neutrons and positrons during fusion are very unlikely to collide with anything while leaving the Sun. When they get to the Earth they can cause neutrons to become protons and electrons.

Since 1965 Ray Davis and others have been observing the solar neutrinos through the conversion of neutrons into protons in a tank of dry cleaning fluid (C$_2$Cl$_4$) in a gold mine in South Dakota.

He received the Nobel prize in Physics for this work.
Detection of Solar Neutrinos

\[n + \nu \rightarrow p^+ + e^- \]
\[^{37}\text{Cl} + \nu \rightarrow ^{37}\text{Ar} + e^- \]

...with a half-life of 34 days
\[^{37}\text{Ar} + e^- \rightarrow ^{37}\text{Cl} + \nu + 0.82 \text{ MeV} \]

By bubbling Ar through the tank of cleaning fluid every week or so, the \(^{37}\text{Ar}\) can be collected and measured through its radioactive decay.

But the number of neutrinos detected is only about 1/3 the number expected.

What happened to the other neutrinos?
Is there less nuclear fusion in the Sun than we thought?
Neutrino Oscillations

The favored explanation for the lack of solar neutrinos is that they changed to something else before getting to Davis’s tank of dry cleaning fluid.

There are 3 families of leptons (light-weight particles):

- electron e^- ν_e
- muon μ^- ν_μ
- tau τ^- ν_τ

Just like there are 3 families of quarks:

- u
- d
- s
- c
- t
- b

Maybe some of the electron neutrinos turn into the other types on their way here.
Quantum Field Theory

Neutrinos can transform from one type into another if the neutrinos formed from electrons, muons, and taus are not the mass eigenstates (the normal modes) of the neutrino field.

Whatever that means.
Cosmic Gall is both well informed and infused by an underlying irritation about the

Cosmic Gall
by John Updike
Neutrinos they are very small.
They have no charge and have no mass
And do not interact at all.
The earth is just a silly ball
To them, through which they simply pass,
Like dustmaids down a drafty hall
Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,
And, scorning barriers of class,
Infiltrate you and me! Like tall
And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal
And pierce the lover and his lass
From underneath the bed - you call
It wonderful; I call it crass.

that about 10^{14} neutrinos from the Sun and
10^3 neutrinos in cosmic rays pass through our
bodies each second.

Their elusiveness is part of their fascination.
In the anthropometric vocabulary that lurks
in the literature of nuclear physics, neutrinos
feature as ‘ghosts’, ‘poltergeists’ and ‘phantoms’
— to say nothing of the ‘personalities’ they are
accorded in physicists’ conversations.

Updike opens with a nursery rhyme or lim-
erick sentence, and then bounces through the
poem with a series of rapid repetitions — mass,
pass, glass, gas, class, lass, crass, all, ball, hall,
wall, stall, tall, fall, call and even Nepal. The
apparent randomness of his examples high-
lights the lack of discrimination and extreme
disinterestedness of the wandering neutrinos.

We sense a perverse degree of relish for the
neutrinos’ detachment from our daily realities,
our Earth-bound perceptions and engrossing
passions — and those of the stallions in their
stalls. “Dustmaids down a drafty hall” is a sug-
gestively rich image, relating to no known job
description but clear in meaning by analogy
to dustmen.

But should physicists really like the poem? It