
Measuring the Properties of Stars (ch. 17) 
[Material in smaller font on this page will not be present on the exam] 

 
Although we can be certain that other stars are as complex as 
the Sun, we will try to reduce their description to a fairly small 
number of properties, since these are the only attributes of stars 
that can be determined by observations.  We will attempt to 
use relations between these properties to answer questions like:  
 
  Why do there appear to be different “types” of stars?  
 How are stars born, evolve, and die?   
 
You will find it useful to keep in mind these general and 
important “big picture” questions.  
⇒ First we discuss how the properties of stars are measured and 
how they can be interpreted (ch. 17).  That is the content of this 
set of notes.  
⇒ Then we do the same for the gas between the stars (the 
“interstellar medium,” ch. 18) and try to put them together to 
understand how stars form (ch. 19), especially as a function of 
mass.  
[For the next exam, however, we will probably have to omit ch. 19.] 
 ⇒ Finally, in the next section of the course we will consider 
in detail how stars of different mass evolve from birth to death. 

 
[Not on the exam: Discover 17-1, p. 441; More Precisely 17-1, p. 445; you should just 
have a basic idea of what the “magnitude system” means when referring to stellar 
brightnesses;  More precisely 17-3.  I won’t test you on the different types of binary stars 
(pp. 469-470) or specifically how masses are determined for each type, but you should be 
comfortable with the general idea; recall that we have been talking about this, off and on, 
since we discussed how to get the mass of the Sun from the Earth’s semimajor axis and 
period, using Kepler’s 2nd law. ] 



 

Basic properties of stars 
 

1. Distances.   
The most basic method is to measure a star’s 
parallax angle, a subject we discussed early in 
the course.  (See Fig. 17.1 for a useful illustration.)   
 
 This method gives rise to the unit of distance 
we will use throughout the remainder of the 
course, the parsec, which is the distance of a star 
with a parallax of one second of arc.  (The 
nearest stars are a few parsecs distant from us, 
while our Galaxy is about 30,000 parsecs across.)  
A parsec is about 3 x 1018 cm, or over a hundred 
thousand times larger than the distance from the 
Earth to the Sun (1AU).  
 
Distance (in parsecs) is equal to the inverse of the 
parallax angle (expressed in seconds of arc). 

 
For example, a star 10 pc distant has a 

parallax angle of 0.1 seconds of arc.  Distant stars 
have such small parallax angles that they cannot 
be measured (recall our discussion of the 
diffraction and seeing limits for telescopes).  So 
there is a distance limit for this method, and it is 
only about 100-500 pc.  



(Think: size of our Galaxy ~ 30,000 pc, nearest 
other galaxies millions of pc away, most distant 
galaxies we can see are billions of pc away.) 

 
The Hipparcos space mission revolutionized our 

knowledge of parallaxes (p. 452).  Planned future space 
missions (around 2010; SIM and GAIA) aim to 
enormously extend the distances to which parallaxes 
can be measured, covering our entire Galaxy.   
 
 Important to note: Most objects we’ll 
encounter in astronomy are too far away to get 
distances by parallax, so we have to use other, 
less direct measurements (the idea of “standard 
candles” is the most important).  But parallax is 
crucial because it serves as the calibration of all 
these other methods; it is the “yardstick” upon 
which other distance measurements are based. 



 
2. Motions 
   We already know how to measure the 
component of star’s motion along our line of 
sight, called the radial velocity:  obtain a 
spectrum and measure the Doppler shift using 
spectral lines.   
 
 But the star also has a component across our 
line of sight; this is called the transverse velocity.  
All we can directly measure is the angular speed 
across our line of sight (“proper motion”); in order 
to get the transverse velocity, we also need the 
distance.  (Think about mosquito/UFO used in 
class.)  
 ⇒ What kind of star do you expect to exhibit 
the largest proper motion?   
 
 When you combine the two components of 
velocity, you get the total space velocity of the 
star.   
We won’t use this information much until we get to topics like 
the origin of our galaxy and the evidence for “dark matter.”  
But you should still know that most stars in the disk of our Galaxy 
are moving relative to each other at around 5 to 50 km/sec.  
Our sun and solar system are moving about 15 km/sec relative 
to the average of nearby stars.  But we orbit our Galaxy about 
250 km/s.  These numbers are important because they allow us 
to obtain the mass of our galaxy, just as we obtained the mass 
of the Sun from Kepler’s third law. 



 

 3. Luminosities.   This is how much energy a 
star is emitting per unit time, i.e. the rate at which 
photon energy is being emitted.  It is exactly the 
same as the power of a light bulb in Watts.  You 
can think of it as the absolute brightness of the 
star, to distinguish it from how much energy an 
observer is receiving from the star, its apparent 
brightness, which obviously depends on the star’s 
distance.   The three quantities are related by the 
inverse square law of light: 
 
 apparent brightness ∝  luminosity/(distance)2 
 
Since apparent brightness is EASY to measure (if 
you can see something, you can measure how 
bright it appears), and we can get distance, at 
least for some stars, from parallax, we can solve 
this for L.  Examples given in class should make 
this clear if it’s not already. 
 [You do NOT have to know anything about 
“magnitude scales” except the basic idea, if 
that.  I won’t use this idea on the exam, but if you 
encounter it in the book, just remember that it’s 
just a handy way to assign numbers to apparent 
brightness and luminosity that have a smaller 
range, like the Richter scale for earthquakes.] 



 
 4. Temperature.   We are talking about the 
photospheric temperature, which is all we can 
directly observe.  There are 2 ways to get T: 
 
 a. Color—remember Wien’s law?  Even 
though stars aren’t perfect blackbodies, we can 
get fairly accurate temperatures (especially in a 
relative sense) by colors.  See p. 456-8, esp. Fig. 
17.9, so that you understand “color” as a 
measure of how much energy is being radiated 
in two different wavelength bands. 
 
 b. Spectra and spectral classification—
We’ve already discussed how the strengths of 
spectral lines of different elements are extremely 
sensitive to the temperature of the gas.  E.g. if 
helium lines, star’s photosphere must be really 
hot, since it takes so much energy to excite its 
electron levels.  Look carefully at Fig. 17.10,  
p. 459, to see how different absorption lines 
appear for stars of different temperatures. 
 
 
 
 
 
 
 



 Astronomers have classified stars into 
spectral types that turn out to be a temperature 
sequence in the order” 
 O  B  A  F  G  K M     ⇒ memorize this 
50,000K ………………..6,000K…….3,000K ← temperature 
HeII     HeI H   various metals   molecules ← strongest lines 

 
 
 



 
 
 5. Sizes.   
Since stars only appear as points of light to even the 
largest telescopes (with a very few exceptions, using 
interferometry for the largest nearby stars: see Fig. 17.11 
for the best example), we can’t get their diameters 
directly.  Instead we use a method that is based on 
Stefan’s law (see ch.3 if you have forgotten): The rate 
of emission of energy of all light, at all wavelengths,  by 
an object, by a unit area of its surface,  per unit time 
(e.g. per second), E, is proportional to the fourth power 
of the surface (photospheric) temperature T4.  Writing L 
for the luminosity (total energy emitted per unit time by 
the whole object) of the object (we’ll see how to 
measure this shortly), and noting that the area of a star 
is proportional to the square of its radius, this gives  

E ∝ L / R2 ∝ T4 ; or   L ∝ T4 R2. 
You can see there are two ways for a star to be 
luminous:  have a high temperature  and/or have a 
large surface area.  This means that if we can measure 
the temperature (from color, or using spectral lines; see 
below), we can get the surface area, i.e. the size R: 
 
    R ∝  L1/2 / T2  . 
 
Don’t worry much about the exponents, just 
understand the idea.   



 
 If you carry this out for a large number of stars (see 
Fig. 17.16), you find that most of them have R similar to 
the sun (these are called “main sequence stars”), but a 
fraction of them are either:  
 
(a) red giants – large L (up to 106 x sun) and small T (i.e. 
red), so must have large size (up to 1000 x sun’s);  

or 
(b) white dwarfs – T fairly large (“white”), but faint, L 
only a few percent of sun.  This means they must not 
have much surface area, i.e. their sizes are tiny 
(comparable the size of the Earth!), even though their 
masses are similar to the sun’s.  They must have huge 
densities!  (Later we’ll see what these classes represent 
in terms of evolution.)   
 
 NEXT: The HR diagram (extremely important)—read  
sec. 17.5.  



 
The H-R diagram (sec. 17.5) 
 
 The H-R diagram is a graph of luminosity vs. 
temperature for individual stars.  This will be our 
basic device for describing the evolution of stars 
so it is important to be comfortable with it.   
 
[Notice that temperature increases from right to left.  
Also note that stars evolve on timescales of at least 
millions of years, so we don’t see them move around in 
this diagram.  We watch models of stars move around.  
More in later chapters.] 
 
 Understand from earlier notes why stars in the 
upper right of this diagram must have large sizes 
(red giants) while those in the lower left (white 
dwarfs) must be small (white dwarfs). 
 
 Also read why plotting only the stars that are 
apparently the brightest would be very 
misleading.  We need to plot all the stars out to 
some distance.  The textbook has some useful 
graphs (pp. 464, 465) illustrating this point.  The 
next plot is an HR diagram showing all the stars 
with Hipparcos distances.  This is still highly biased 
toward the brightest (as well as most numerous) 
stars.  Also note that the width of the main 
sequence is pretty large—this is because the 



main sequence varies somewhat for stars with 
different “metal” abundances. 

 
 
HR diagram for stars with Hipparcos distances.



 
 If we use a complete sample of stars (i.e. not biased by 
how bright they appear) we find: 

~90% main sequence (MS) stars 
~1%  red giants 
~9%  white dwarfs 

Why? That’s the purpose of stellar evolution theory, but you can 
already guess a couple of possible answers. 
 
Spectroscopic Parallax (p. 466) 
 If you can establish that a star is a main sequence 
(MS) star (and you can—from its spectrum; see 
“luminosity class” in text), then the spectral type gives 
you the temperature, so you can just read off the 
luminosity from the H-R diagram.   
 

Knowing the apparent brightness (really easy to 
measure) and luminosity, this gives the distance (review 
earlier material if you don’t understand this), without 
having to get a trigonometric parallax.  Distances 
obtained in this way are called “spectroscopic 
parallaxes.”  (In “spectroscopic parallax” the word 
parallax is just used to mean “distance.”) 
 
 You can get distances out to roughly 10,000 pc (10 
kiloparsecs) using this method.  (Compared to about 
500 pc for trigonometric parallax.)   
 
 This is our first example of using a “standard 
candle”:  some property of the star (in this case 
its temperature) gives you its luminosity (hence 
the analogy with a candle or light bulb).   



 
Stellar Masses 
 The only method for directly determining the 
masses of stars is from binary stars, using Newton’s form 
of Kepler’s 3rd law.  There are three types of binary stars, 
which depend on how close they are to each other, 
their relative brightnesses, the distance of the binary, 
and other factors: 
 

a.Visual binaries—can see both stars, and so 
monitor orbit directly.  (But must be near enough for 
you to resolve the two stars—not that many of these!)  
See Fig. 17.19.  Notice that you need the distance to 
convert the angular separation of the binary pair into a 
linear separation (i.e. in km or AU).    

 
b.Spectroscopic binaries—in this case you might 

see one or both stars, but the way you can tell they are 
in orbit is by observing periodic changes in the Doppler 
shift of their spectral lines.  See Fig. 17.20.  The period of 
the radial velocity variation is the period of the system.  
Using this, you can estimate the semimajor axis (for a 
circular orbit, the period = 2π x orbital radius/orbital 
velocity).  So with period and semimajor axis, can get 
masses (actually only lower limit—inclination; see text). 

Recall that this is how extrasolar planets were 
discovered (the “radial velocity method”). 



 
c. Eclipsing binaries – only get eclipses if the orbit is 

very nearly along the observer’s line of sight, i.e. edge-
on (so favors very small orbits), but can get lots of 
information, even the sizes of the stars, from the light 
curve.  (See Fig. 17.21) 

Recall that this is the basis for the “transit method” 
that we discussed in relation to extrasolar planet 
detection. 

 
Generally, get only limits on stars’ masses, but in 

many cases (e.g. spectroscopic eclipsing binaries) can 
get actual masses.  See p. 471. 

 
Results:  
Accurate masses are known for ~ 100 stars, 

showing that stars span the mass range ~ 0.1 to 50-100 
solar masses.  Why this range?  That is subject of future 
chapter, but for now, the most important thing we learn 
from this is an estimate of the lifetimes of stars, and how 
they depend on mass.  This comes from: 



 
The mass-luminosity relation for main sequence stars 
(sec. 17.8).  Roughly, find from observations that L ∝ M3.  
This tells us that the mass varies continuously along the 
main sequence.  Range is roughly 50 solar masses 
(luminous hot stars, spectral type O) to about 0.1 solar 
masses (faint cool stars, spectral type M).  But notice 
strong mass-dependence of luminosity! 
 

Theory tells us that the mass a star is born with 
determines nearly everything else about its fate. 
 Good example:  
stellar lifetime = fuel supply/rate at which it is being 
burned 
        ∝ stellar mass / stellar luminosity 
        ∝ M / M3 ∝ 1/M2  
So low mass stars live the longest.  Numerically, we find 
a lifetime of a few million years for 50 solar masses, 10 
billion years for the sun, and about a trillion years (much 
greater than the estimated age of our universe) for the 
lowest mass stars. 
 Now stare at Table 17.5 (Measuring the Stars) and 
see if it all makes sense to you.  Try the questions at the 
end of the chapter before moving on. 
 
Next (ch.18): try to understand the properties of 
material (the interstellar medium) from which stars form.  


