Homework #4 Due October 15, 2009

Curve of Growth analysis to determine column density

Column density and elemental abundance for a wide variety of astronomical objects are determined using the curve of growth we discussed in class. In this homework you are asked to estimate the neutral-Hydrogen column density for Lyman- α clouds using real data from a paper by Lu et al. (ApJ, 472, 509, 1996; astro-ph/9606033). Browse though this paper and see how the authors go about determining HI column density etc. (you will be doing a simplified version of their analysis). To help you in this work I have broken down the task in 5 smaller steps that are outlined below. **Each part carries 20 points**.

1. Cross-section calculation: we derived the following expression for the cross-section $\sigma(\omega)$ in class:

$$\sigma(\omega) = \left(\frac{m}{2\pi kT}\right)^{1/2} \omega_0^2 \sigma_T \int_{-\infty}^{\infty} dV_z \, \frac{\exp(-mV_z^2/2kT)}{4(\omega - \omega_0 - \omega_0 V_z/c)^2 + \Gamma^2},$$

where *m* is the mass of HI atom, *k* is Boltzmann constant, *T* is gas temperature, V_z is the thermal speed of atoms, ω_0 is the Lyman-alpha transition frequency in the rest frame of the atom, *c* is speed of light, and $\Gamma = A_{12}$ is the transition rate from n = 2 to n = 1 state.

Show that the above equation can be transformed into the equation below by a change of variable–

$$\sigma(\omega) = \frac{\sigma_T}{4\pi^{1/2}} \frac{c^2}{V_T^2} \int_{-\infty}^{\infty} d\beta \, \frac{\exp(-\beta^2)}{\left[\frac{\Delta\omega}{\Delta\omega_D} - \beta\right]^2 + \frac{\Gamma^2}{4(\Delta\omega_D)^2}},$$

where $\beta = V_z/V_T$, $V_T = \sqrt{2kT/m}$, $\Delta \omega = \omega - \omega_0$, and $\Delta \omega_D = V_T \omega_0/c$.

2. Integrate the above equation for $\sigma(\omega)$ numerically. Use the following constants for your numerical integration: $\Gamma/\omega_0 = 3 \times 10^{-8}$, $V_T/c = 4 \times 10^{-5}$, $\sigma_T = 6.65 \times 10^{-25} \text{cm}^2$. Plot $\sigma(\omega)$ in the frequency interval $-50\Delta\omega_D$ to $50\Delta\omega_D$ — using log-scale for the y-axis; it is convenient to choose the unit for frequency such that $\Delta\omega_D = 1$ in this unit. Identify the part of the curve

1

that is due to the Doppler broadening and the part that comes from the Lorentzian profile associated with the finite lifetime for the excited state. (Note: because of the $\exp(-\beta^2)$ factor in the integrand it is sufficient to carry out the β integral from -10 to +10, but make sure that the grid size you choose for β is sufficiently small so that the numerical error in your integral is less than 1%.)

3. The **flux transmitted** by a Ly- α cloud, $I_{\nu}^{(T)}$, is related to the incident flux, I_{ν} , via

$$I_{\nu}^{(T)} = I_{\nu} \exp(-\tau_{\nu}),$$

where $\tau_{\nu} = N\sigma(\omega = 2\pi\nu)$, and N is the column density of neutral hydrogen atoms in the ground state.

Using your result for $\sigma(\omega)$, calculate, and plot, the Ly- α absorption line profile for $N = 10^{11}$, 10^{13} , 10^{15} and $N = 10^{17}$ cm⁻². Use the units such that $\Delta \omega_D = 1$, and $I_{\nu} = 1$.

4. The equivalent width is defined as

$$W \equiv \int d\lambda \; \frac{I_{\nu} - I_{\nu}^{(T)}}{I_{\nu}}.$$

Using the equation for $I_{\nu}^{(T)}$ this can be rewritten as

$$\frac{W}{\lambda} = \int \frac{d\omega}{\omega} \left[1 - e^{-N\sigma(\omega)} \right].$$

The curve-of-Growth is a relation between W/λ and N. Calculate, and graph, the curve-of-growth for the Ly- α transition for N in the interval 10^{10} cm^{-2} and 10^{22} cm^{-2} ; it is best to display the curve-of-growth on a log-log plot. Identify and label the three regimes for the curve-of-growth on your graph (these regimes are: linear, log, and square-root).

5. Use figure 2 in Lu et al. (1996) to estimate W/λ for a few of the lines in the Ly- α forest. This part of the homework is not meant to be very precise i.e., it is okay if you were to use the full-width at half maximum of an absorption line, using a ruler, as a rough estimate for W; (Lu et al. (1996) fit a Voigt profile to each of the absorption lines in the forest and thereby determine W and cloud temperature). Using your estimated values for W/λ , and your graph of the curve-of-growth, estimate the HI column

2

density. Compare these values with the values given in Lu et al. (you should be within a factor of 10 or so of the published value).

3