Announcements

- Quiz#6 (last quiz) on Thursday
- Homework#5 due today!
 - Please turn it in NOW.

Lecture 22 Inflation – before the Big Bang

Reading: Chapter 23

Success of the Big Bang theory

- Expansion of the Universe
- Existence of the cosmic microwave background
 - The universe was hot in the past.
 - Thermal equilibrium
- Abundance of light elements
 - 75% Hydrogen, 25% Helium
 - A little bit of Deuterium and Lithium
- Is the Big Bang theory perfect?

Shortcomings of the Big Bang Model

- So far, we have considered the evidence which supports the Big Bang theory.
- Prior to 1980, cosmologists had identified three major questions which the theory was unable to answer:
 - 1. Where does structure come from?
 - 2. Why is the large-scale Universe so smooth?
 - 3. Why is the density of matter almost critical?
- In other words, the Big Bang theory does not tell us anything about initial conditions of the Universe. (How did it get started?)
- What initiated the Big Bang??

Birth of Inflationary Theory

- In 1981, physicist Alan Guth realized that the Grand Unified Theories could hold the answers to these questions.
- When the strong force froze out of the GUT force...
 - it should have released enough energy to expand the Universe 10^{30} times in less than 10^{-36} sec
 - we call this dramatic expansion **INFLATION**
- Alan Guth unified the early universe physics with particle physics...

Quote from Alan Guth's Book

- After a few of the most productive hours I had ever spent at my desk, I had learned something remarkable... By 1:00am, I knew the answer: Yes, more than I could have ever imagined.
- The next morning I bicycled hurriedly to my office to start work, breaking my personal speed record with a time of 9 minutes and 32 seconds.
- My instincts were telling me that I might be on to something big.

Ouroboros's Snake

Where Does Structure Come from?

- The density of matter in the early Universe had to differ slightly from place to place.
 - · otherwise, galaxies would never have formed
 - · traditional Big Bang model does not tell what caused density enhancements
- Quantum Mechanics: energy fields must fluctuate at a given point.
- Energy distribution is irregular...
 - on microscopic spatial scales
- These quantum ripples would be greatly magnified by inflation.
- Large ripples in energy are the seeds for the density enhancements.
 - they imposed a pattern about which structure formed
- Quantum Fluctuations
 - Ultimate origin of everything!

size of ripple after inflation = size of solar system

Why is the Large-Scale Universe so Smooth?

- In all directions, the Cosmic Microwave Background is uniform.
- Traditional Big Bang model can not explain...
 - how two disparate parts of the Universe, beyond each other's cosmological horizon, can have the same temperature

Solution to the Horizon Problem

- Inflation can solve this problem.
 - the entire Universe was less than 10^{-38} light-second across
 - · radiation signals could reach all points in the Universe
 - temperatures were equalized
 - then inflation expanded the Universe so quickly
 - that many points in the Universe went out of communication with each other

© 2005 Pearson Education, Inc., publishing as Addison Wesley

• Having learned about the horizon problem at lunch, I went home and thought about it.

- Eureka!
- The exponential expansion of inflation would obliterate this problem, too.

Why is the Density of Matter Almost **Critical**?

- The gravitational pull of the Universe almost balances the kinetic energy of its expansion...Why?
 - if matter were at least 10% denser, Universe would have already collapsed
 - if matter were at least 10% less dense, galaxies would have never formed
- According to General Relativity, an imbalance of these energies imposes a curvature of spacetime.
 - but when they balance, we say that spacetime is "flat"

Flatness Problem

Solution to the Flatness Problem

- The effect of rapid inflation is to flatten spacetime.
 - thus, inflation imposed the balance of these energies
- Imagine surface of an expanding balloon.

Steven Weinberg's response

- Sheldon Glashow (another Novel laureate in Physics) told Alan Guth that he had decided inflation must be a good idea when he explained it to Steven Weinberg, who became "furious".
- "Did Steve have any objections to it?", Alan asked.
- "No," replied Sheldon, who enjoyed poking fun at his colleague.

• "He just didn't think of it himself."

Then, "Bang!"

- A very rapid expansion of the universe (inflation) will make the universe extremely cold.
 - Temperature will reach absolute zero.
- How did the universe become hot?
- When inflation ended, the energy which had driven inflation was converted into heat (energy conservation again).
 - This is the moment when the univese became extremely hot.
 - The beginning of the hot universe --- the Big Bang.
- Note that there was no explosion.
 - In that sense, the popular picture of the Big Bang as a big explosion is not quite correct.

New Evidence for Inflation

- A Big Bang model with inflation was fitted to:
 - temperature variations plotted as angular separation on the sky
 - the data are shown here
 - Overall geometry of the Universe is flat.
 - Total matter density is 27% of the critical density.
 - in agreement with M/L in clusters of galaxies
 - Density of baryonic (ordinary) matter is 4.4% of critical density.
 in agreement with observed abundance of Deuterium
 - Flat geometry + matter density < critical implies dark energy.
 in agreement with accelerating expansion from white dwarf supernovae
 - Age of the Universe is 13.7 billion years.

New Evidence for Inflation

- In 2002, the *Wilkinson Microwave Anisotropy Probe* (WMAP) measured the Cosmic Microwave Background with much more precision than COBE.
- It detected far more subtle, small-scale temperature variations.

Message

- Inflation has changed the way we think about the universe *completely*.
 - It was proposed more than 20 years ago, and it has become the standard theory of the early universe.
- This theory provides us with a picture of the universe before the Big Bang.
 - And, we can even "see" this epoch by observations. (although not directly.)
- Inflation gave us a great stride toward understanding the complete history of the universe.

Next Lecture: The Fate of the Universe

- The last quiz on Thursday (Nov 18)
- Multiple choices
 - All of "True Statements?" in Chapter 23
 - 3 additional multiple choices regarding
 - The Big Bang (Problem 10)
 - The Earliest Moment (Problem 12)
 - Nucleosynthesis (Problem 13)
- Short Answer Questions
 - Cosmic Microwave Background