

PULSE@Parkes

Engaging students through hands-on radio astronomy

Robert Hollow, George Hobbs, Ryan Shannon & Matthew Kerr August 2015

ASTRONOMY AND SPACE SCIENCE www.csiro.au

Twitter: @PULSEatParkes

Challenge

- Develop and implement engaging radio astronomy/gravitational wave activities for high school students
- Provide opportunity for students to use a national facility and engage with professional scientists
- Have students doing science that is appropriate for them and useful for professional astronomers

PULsar Student Exploration online at Parkes

Our Tool: 64m Parkes radio telescope

Our program

- Free
- Aimed at students Yrs 10-12
- Pre-observing school visit
- ~ Monthly observing session
 - Maximum ~ 24 students
 - 2 hours telescope time, remote observing
 - Online data analysis module
 - Interaction with scientists,
 PhD students & other schools
- Opportunity for follow-on student investigations

Our progress

- Started, November 2007, launched by then new Science Minister
- 107 sessions to date
- Australian sessions in NSW, Victoria, Western Australia, ACT
- International sessions in at Cardiff, Oxford, ASTRON, Canada + 2 x tours to Japan

Our students

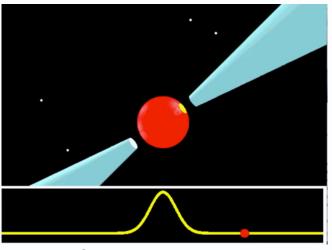
- ~ 1,390 students, ~ 220 teachers
- ~ 111 (134) schools
- Yrs 10-12, some 9s and 7s
- Strong repeat demand from schools
- Strong engagement from girls' schools

The Japan trips

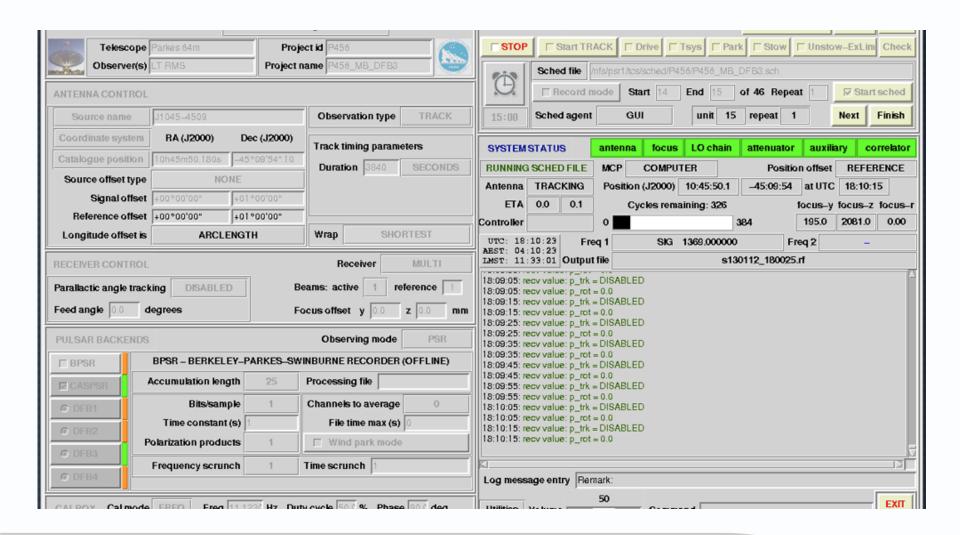
- Australia-Japan Foundation grant to take PULSE@Parkes to Fukushima Prefectures in the Tsunami-affected regions in 2013
- 2. Successful and trip repeated in 2014
- 3. Easy to control the telescope remotely (network issues => one session was run through a mobile phone).
- 4. Language issues not (much of) a problem!

Looking towards China

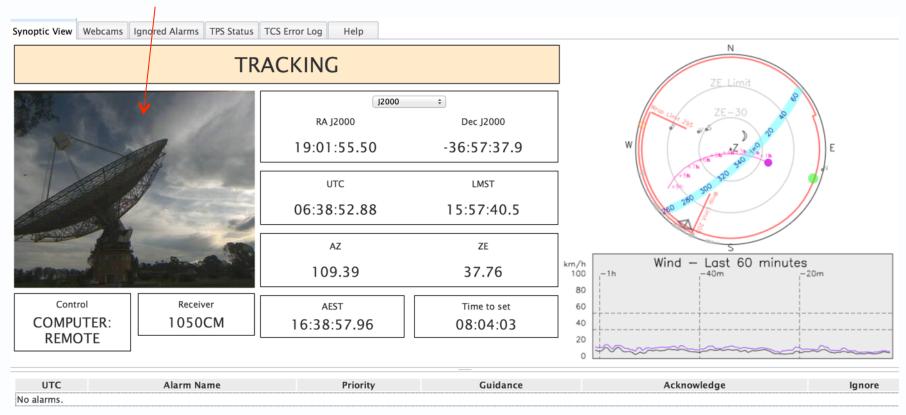
- 1. Initial grant to run PULSE@Parkes in Guangzhou, China (December 2015)
- 2. High school & university students in Guangzhou
- 3. Likely to develop a multi-year partnership
- 4. Change in mode of science education
- 5. Modules and some webpages being translated into Chinese

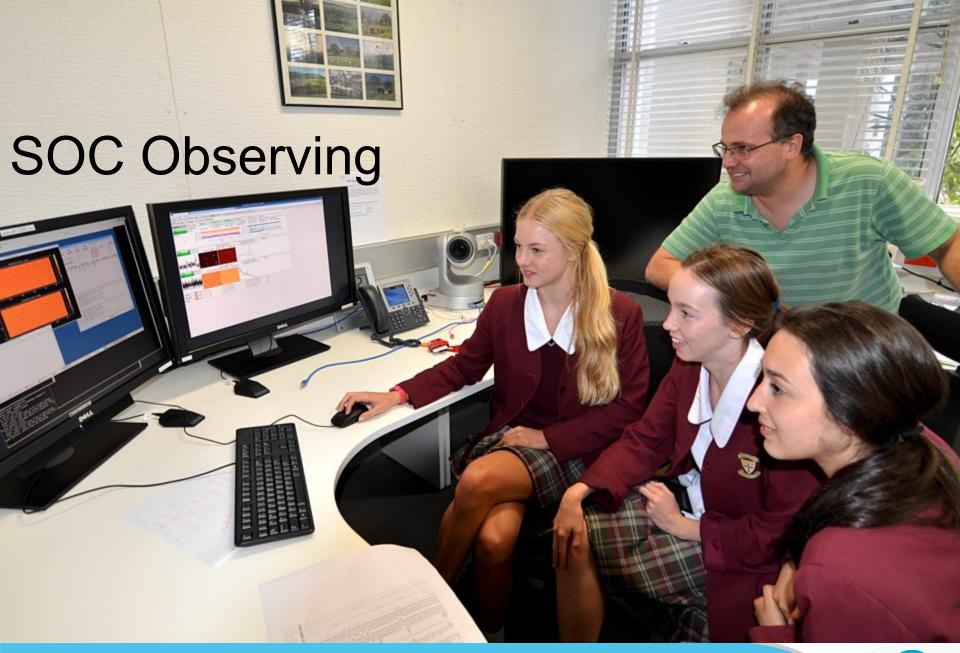


What do we have? ... Pulsars


- 1. The highest magnetic fields known
- 2. Star surface moving close to the speed of light
- 3. Incredibly dense
- 4. Incredibly stable
- 5. A pulsar is "a lighthouse in space"
- 6. Pulsars are easy **and quick** to observe with a radio telescope
- 7. Pulsars are being observed to detect ultra-low-frequency gravitational waves

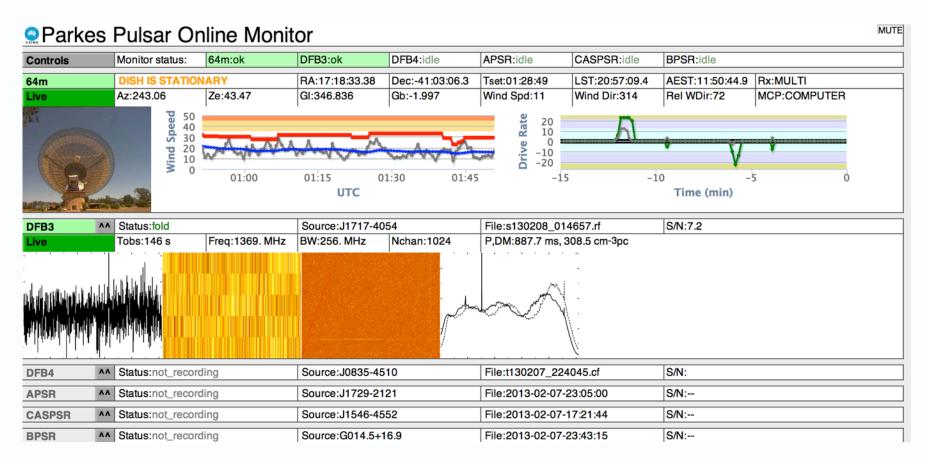
Credit: Michael Kramer


TCS: Telescope Control Software

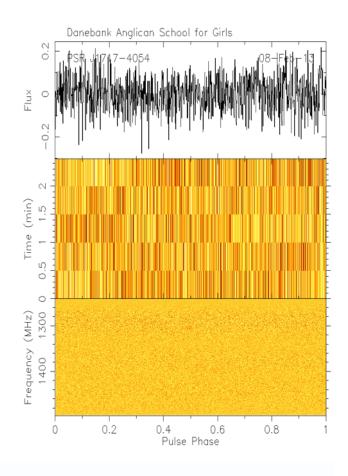


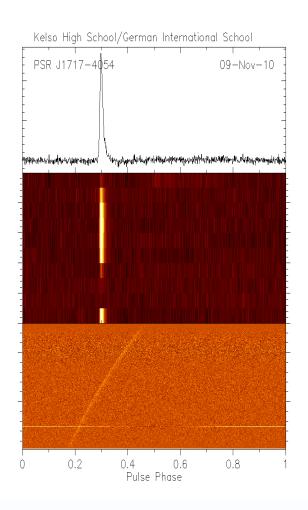
FROG

LIVE WEBCAM



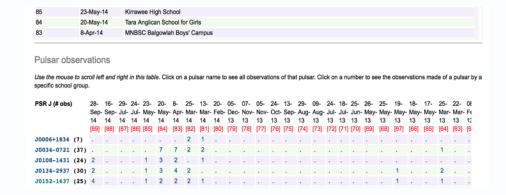
Live Web-based Data Monitor

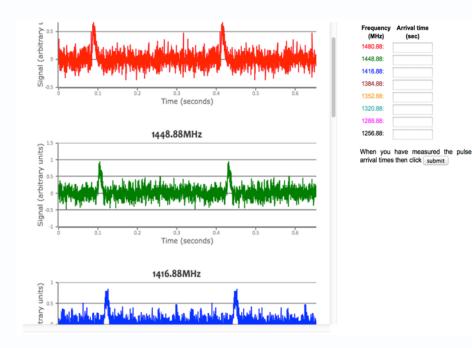

http://www.parkes.atnf.csiro.au/online/psrmon/



Also includes live webcam

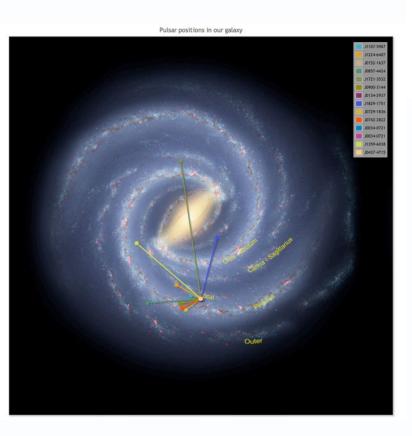
Seeing pulsars in "real time"




Process their own data

- Student data available on web within a few minutes of the observation
- 2. Use their data to determine the distance to their pulsar
- 3. Have a go ...

 http://pulseatparkes.atnf.csiro.au


 "measure a distance to your
 pulsar"

Get a sense of the scale of our galaxy

Pulsar	Your distance (light years)	Actual distance (light years)	How close are you? (light years)	Error in determination (percent)
J0857-4424	20000	20041	-41	0.20 percent
J0452-1759	4300	4336	-36	0.83 percent
J1359-6038	32000	31916	84	0.26 percent
J1543-0620	2000	1999	1	0.05 percent
J1721-3532	54000	53898	102	0.19 percent

Being part of "real" science

- 1. Observations carried out with world-leading instruments.
- 2. Data can be used for research science by professionals
- 3. All data public (data.csiro.au)
- 4. Currently 1 refereed, research paper (on pulsar intermittency) using PULSE@Parkes data. More to come. Kerr, M et al MNRAS vol 445, pp320-329, 2014
- 5. Data also used (and published) as part of the PPTA project and observations of gamma-ray pulsars.

What we have learned from the project

- 1. Real data and interfaces are strong motivators
- 2. Astronomers & educators need to collaborate
- 3. Pulsars provide quick results, ideal radio astronomy example
- 4. Student interactions with scientists and university students are a vital and integral component of program
- 5. Students like to know that there are unsolved problems
- 6. Very effective as capability demonstrator and ambassadorial role

What next for PULSE@Parkes?

- 1. Continue & expand observing sessions new telescopes?
- 2. Refine remote sessions to increase accessibility
- 3. More online modules
- 4. Sandbox & resources for open-ended student investigations
- 5. More detailed teacher training/collaboration
- 6. Develop collaboration with PSC and other groups
- 7. Explore, develop and expand undergraduate training resources
- 8. Better evaluation

Keeping in touch

- 1. http://pulseatparkes.atnf.csiro.au
- 2. Project lead: robert.hollow@csiro.au
- 3. Science lead: george.hobbs@csiro.au
- 4. Twitter: @PULSEatParkes

Our products

- Website: http://pulseatparkes.atnf.csiro.au/

 (upgrade coming soon!)
- Data archive: http://pulseatparkes.atnf.csiro.au/database
- Distance analysis module: <u>http://pulseatparkes.atnf.csiro.au/pulsardistance/</u>
- Pulsar online monitor real time data: http://www.parkes.atnf.csiro.au/online/psrmon/

Invitation to Try it Out

Hands-on session Tuesday 11 Aug, 10am-12pm on Australian Astronomy booth.

COME ALONG!

Thank you

CSIRO Astronomy and Space Science

Robert Hollow

Education Officer

t +61 2 9372 4247

E robert.hollow@csiro.au

w http://outreach.atnf.csiro.au/

ASTRONOMY AND SPACE SCIENCE

www.csiro.au

