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1. Introduction

White dwarfs are some of the simplest stars. Because of their simplicity, they can be

studied to learn fundamental facts about the universe. By studying them, we can learn about

their progenitors, and 97% of stars end their lives a white dwarfs. They can also be used

to find the age of the galactic disc. These determinations, however, rely on the accuracy of

our models of white dwarfs. In white dwarf science and the field of Astrophysics in general,

one of the most prevalent, and least understood phenomena is convection. The reason for

this uncertainty is the non-local nature of convection. One could argue that the beginning

of modern science, (certainly classical physics) came with Newton and the development of

calculus. Calculus is the system we use to describe change, and has been widely applied

across the sciences. However, this technique, while incredibly useful, cannot describe non-

local phenomena, or situations where any point can be effected by far off points. Convection

is just such a situation. Because you can’t break these problems down to a simple, local

approximation, we have no analytical tools to solve them. These kind of problems went

largely unsolved until recently.

With the advent of the computer came the hope of computing the effects of convective

regions directly from first principals. Unfortunately, to compute the effects exactly you

need an unattainable amount of computational power. By making some assumptions and

simplifications, however, you can bring the problem into a regime which is computable by

modern, massively parallel computers. This kind of simulation has been achieved in many

stars, most notably the sun [cite]. To confirm the accuracy of these solar simulations data

from luminosity variations along the surface can be used. For other stars, however, no

such spatial resolution is possible, so some other effect of convection must be measured.

Fortunately, pulsations in certain classes of white dwarfs interact with convection giving us

just such an effect. By fitting models of stars with these two interacting phenomena to data

from real stars, we can learn more about convection in the physical regime of white dwarfs,

as well as about the white dwarfs themselves.

2. Turbulent energy transport

Turbulent energy transport, or convection occurs in most stars, including our sun. It

even occurs in planets like the earth. Understanding convection better can help us un-

derstand all the stars and even possibly earth weather. To be able to parametrize this

phenomena, we have to first understand why it happens.
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Fig. 1.— Lagrangian Description of Condition for Convection: This image is not to scale.

In reality the slice of the stellar atmosphere we are talking about is a tiny sliver that takes

up much less of the star than the rectangle pictured indicates.

2.1. Condition for Convection

In order for convection to occur, when a fluid element gets displaced, it must keep

moving rather than return to its original position. To understand under what conditions this

happens, we use the Lagrangian formulation of perturbation theory, and track the displaced

fluid element. This is illustrated in Figure 1.

Let our fluid element be moved from r1 to r2. As these are two different radii, they have

slightly different values of P and ρ. At r1 we define the following values for the pressure and

density:

Pr1 = P

ρr1 = ρ

and at r2 we define

Pr2 = P + ∆P

ρr2 = ρ+ ∆ρ.

Our fluid element F will start with the same properties as the rest of the fluid at r1,

namely:

PFs = P

ρFs = ρ

As it rises, however, its pressure will change to remain in equilibrium with its surround-

ings. For this step we make the adiabatic assumption, namely that this step happens fast

enough that there is not enough time for the fluid element to lose or gain energy or particles,

so the entropy of the fluid element remains constant. For the pressure to equalize with the
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surroundings, the volume and therefor density of the fluid element has to change. This sets

the fluid element F to the new values of:

PFe = P + δP

ρFe = ρ+ δρ.

From pressure equilibrium at its new position we know:

PFe = Pr2

P + δP = P + ∆P

δP = ∆P.

For the element to continue to rise (as it must if the region is convective), it has to be

lighter than its surroundings, i.e., have a lower density, so:

ρFe < ρr2

ρ+ δρ < ρ+ ∆ρ

δρ < ∆ρ.

If, on the other hand:

δρ = ∆ρ

F will stay at r2, and if:

δρ > ∆ρ

F will fall back to r1.

So now we just have to determine ∆ρ and δρ in terms of the properties of the star.

As we are looking at a very small fraction of the star’s radius, we can just do a first order

approximation in this region, meaning:

ρr2 = ρr1 + h
dρ

dr

ρ+ ∆ρ = ρ+ h
dρ

dr

∆ρ = h
dρ

dr
.

Similarly:

∆P = h
dP

dr
.
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To find δρ, we have to know how ρ changes as a function of P , with the entropy held

fixed. This is known as the equation of state. In general, we can write the equation of state

in this form:

ρ = ρ(P, S).

Here ρ is a function of pressure and entropy, however, in our fluid element, the entropy does

not have time to change so:

ρFe = ρ(Pr2 , Sr1) = ρ(P + ∆P, S)

Expanding around ρ(P, S) we have

ρFe = ρ(P, S) + ∆P

(
∂ρ

∂P

)
S

+ ∆S

(
∂ρ

∂S

)
P

,

and since the entropy is constant (∆S = 0), this yields

ρFe = ρ(P, S) + ∆P

(
∂ρ

∂P

)
S

ρ+ δρ = ρ+ h
dP

dr

(
∂ρ

∂P

)
S

δρ = h
dP

dr

(
∂ρ

∂P

)
S

.

So the condition for convection to occur is:

δρ < ∆ρ

h
dP

dr

(
∂ρ

∂P

)
S

< h
dρ

dr

dP

dr

(
∂ρ

∂P

)
S

<
dρ

dr
.

The dP
dr

and dρ
dr

terms are the changes in pressure and density respectively as we get

farther out in the star. The pressure and density decrease from the center to the surface, so

we can say
dP

dr
< 0

dρ

dr
< 0
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This means I can rearrange the inequality as given below:(
∂ρ

∂P

)
S

>

(
dρ
dr

)(
dP
dr

) =
dρ

dP
.

So in order for convection to occur, the local change in density with pressure in a region of

the star has to be less than the adiabatic change in density with pressure. It is important

to note that if we were to do a similar derivation for a fluid element displaced downwards

towards the center of the star, that continued to sink, we would obtain the same result.

2.2. Mixing Length Theory

From the derivation above, we can conclude that convection does occur, and indeed it

occurs somewhere in most stars. However, at this point our ability to interpret convection

analytically ends. When these displaced fluid elements are lighter than the surrounding fluid,

they speed up and continue to rise. This acceleration continues throughout the region of the

star where the condition I derived above remains true. This makes it very hard to figure out

what actually happens in these regions. If fluid elements can slam through a region changing

the local conditions abruptly, it is hard to rely on any assumptions about local stability that

lie at the heart of calculus.

Even following just one fluid element and keeping the rest fixed can lead to problems. If

the fluid element keeps accelerating, minor differences in the density or pressure of the fluid

through which it’s moving can deflect or slow it, breaking it up unpredictably. Because of

this, convection remains a largely unsolved problem today and one of the largest sources of

uncertainty in stellar modeling (Montgomery 2005).

Currently, the most commonly used approximation of convection is known as Mixing

Length Theory. This method is only an order of magnitude approximation, and is used

because it is easy to compute rather than because of any faith in its accuracy. As Kippenhahn

says, “we do not believe it [mixing-length theory] to be sufficient, but it does provide at least

a simple method for treating convection locally at any given point of a star.” (Kippenhahn

book “Stellar Evolution”) Basically, mixing-length theory assumes that convection happens

over a certain length lm (the “mixing length”) and from there derives an equation for the

energy flux through that section of the star. With this, most other properties of the star

important to stellar evolution can be determined.

However, the correct value for lm is not readily apparent. The normal ad hoc assumption

is that the mixing length is some parameter α, which is of order 1, times the local pressure
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scale height, i.e.,

lm = αHP ,

where

HP = − P

dP/dr
.

This parameter α varies widely between different types of stars, which drastically reduces

its predictive power. Fortunately with the power of the TACC (Texas Advanced Computing

Center) and other super computers, a more complete treatment of this problem can be

attained.

2.3. Antares

In order to better define the size and properties of the convection region of white dwarfs,

I have attempted to simulate this convective region of the star. Hydrodynamic simulations

take an Eulerian approach to fluid dynamics, breaking up the convective region into a grid of

points each with their own values for ρ, P , T , and many other physical properties of matter.

This simulation continuously updates these physical properties for each grid point after short

time intervals based on the properties of the points around them. To figure out how to update

each grid-point, the simulation relies on tables of measured equation of state relationships.

This process of updating the grid-points relies only on basic principals of physics, so it’s

reliable, but computationally expensive. Getting it to complete in a realistic time frame

requires a lot of algorithm refinement and optimization that balances speed with accuracy.

The program I have used for this simulation is the ANTARES program, developed at the

University of Vienna to simulate the convective region of the sun. I created a program to

visualize this output. A sample rendering is shown in Figure 2. This program has had great

success when applied to the sun and A-Stars, and is now being applied to large, Jupiter-like

planets. However, in the case of white dwarfs, I have run into some difficulties that appear

to be caused by extremely fast moving fluid elements.

There are two speeds that are important in this simulation, the speed of the fluid

element, and the sound speed. The sound speed is important because it controls the speed

at which thermal equilibrium is reached. If we picture the star as a set of discrete layers,

each with its own pressure, density, and temperature, a fluid element passing through these

layers spends a discrete amount of time in each

trn =
h

v F
.
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Fig. 2.— Radiative flux in one time-step of the program ANTARES.

This is the amount of time that the particles have to bounce around on the edge and ex-

change energy before the fluid moves on to the next layer. When I derived the condition

for convection, I made the adiabatic assumption, which means I assumed that the fluid I

was tracking moved too fast to settle into thermal equilibrium in any one of these layers.

This means fluid in the region should bee moving pretty fast. If the velocity of the fluid

element is extremely fast, however, approaching or even surpassing the sound speed, it will

travel through layers of the star without changing much at all. If it stays this fast for long,

and travels through a enough layers, it will eventually be surrounded by fluid with a very

different temperature and density.

Using a tool I created to read and interpret the output of ANTARES, I found fluid

moving with velocity greater than twice the speed of sound. This speed seems to be making

adjacent grid points have wildly differing temperatures and densities. This pushes ANTARES
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equation of state lookups into regimes we haven’t measured yet. Unable to resolve these

gridpoints, the simulation ends before producing useful results. I have been unable to find a

way to resolve this problem and leave it to future work.

3. Interaction Between Convection and Pulsations

Concurrently with the ANTARES project, I have been building on the work of my

adviser Mike Montgomery. In his 2005 paper entitled “A New Technique for Probing Con-

vection in Pulsating White Dwarf Stars”, Montgomery builds on the work of Brickhill and

that of Goldreich & Wu, in developing a technique to measure convection zone size by fitting

observations. In this section I will follow this derivation. This technique takes advantage

of the extreme oscillations in the physical properties of the atmospheres of pulsating white

dwarfs.

As part of their evolutionary cycle, white dwarfs with hydrogen atmospheres (DAs)

enter what is known as the instability strip, where they can change in brightness by 10%

in a matter of minutes, as pictured in Figure 4. These brightness variations are a result of

harmonic oscillations in temperature and density throughout the star. These variations in

brightness (or energy flux), then should be described by standard harmonic oscillations of a

spherical object:

F =
∑
j

Re[Aje
i(ωjt+δj)Ylj ,mj

(θ, φ)].

Here the characteristic sinusoidal behavior of a wave is represented by Aje
i(ωjt+δj), each of

the j waves, has an amplitude A, a frequency ω, and a phase δ. The effects of the spherical

structure of the star are taken into account through Lapace’s spherical harmonic equations,

Yl,m(θ, φ), where θ and φ are spherical coordinates, and l and m are integers such that

−l < m < l. This fits our observations fairly well, however the light curves show additional

nonlinear effects. These effects have long been attributed to convection ?. As a star pulsates,

the fundamental physical parameters of the star (e.g., its temperature and density) change.

When these parameters change, so does the size of its convective envelope.

Three facts about these stars make it possible to parametrize this constantly changing

convection zone. First of all, the time it takes a convection zone to relax into stable state

(convective turnover timescale) is much less than the time is takes a pulsation to complete

a cycle. Secondly, the radial size of the convection zone is much smaller than the radial

wavelength of a pulsation. This means at any given time we can assume the the convection

zone on any section of the surface of the star is the same as a convection zone of a non-

pulsating star in equilibrium at that temperature. Finally, as the convective envelope lies on

– 9 –



Convection in White Dwarf Stars Kevin Luecke

Fig. 3.— Value of the convective turnover timescale as a function of effective temperature

as predicted by mixing length theory. A few different values of α that are appropriate for

white dwarfs have been plotted.

the very outer edge of the star, we can assume that the energy flux underneath the convection

zone strictly follows the equation above.

As a fluid becomes convective its method of energy transport changes, which can be

thought of like a phase change. This means the energy flux leaving the star is the flux

entering the convective region minus the energy it takes to “change the phase” of fluid

elements from convective to non-convective:

Fphot = Fbase − τC
dFphot
dt

,

where τC is the convective turnover timescale and can be thought of as the heat capacity

of the convection zone. The formula for the flux at the base is the standard model for

white dwarfs mentioned earlier. Using mixing length theory, we can estimate the convective

timescale as a function of temperature. Even if you vary the mixing length parameter α, τC
is fitted by a power of Teff . To see this more clearly we can plot log(τC(Teff)), and notice

that it is nearly linear, with a negative slope (see Figure 3). From this we can approximate

the convective timescale:

τC(Teff) ≈ τ0 ×
(
Teff

Teff,0

)−N
Here Teff,0 is the starting temperature, τ0 is a constant depending on α, and N is a constant

approximately between 90 and 95 in DAs. This supports the theory that τC is strongly

dependent on T , and the convection zone strongly effects the energy flux at the photosphere

(Fphot).
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Using this model as the basis for a fitting program, Montgomery has been able to

reproduce the light curves of simple stars with extreme accuracy. However, this program is

not able to fit all of the parameters quickly enough to be useful on complex stars. To fix

this problem, I have expanded the program to take advantage of massively parallel hardware

on personal computers as well as that available to University of Texas students through the

Texas Advanced Computing Center (TACC).

3.1. Lcfit theta and GAMA

The program Montgomery wrote fit effects of convection zones on light curves is called

Lcfit theta. This program solves the following ordinary differential equation (ODE), repro-

duced in full:

Fphot = −

[
τ0 ×

(
Teff

Teff,0

)−N]
dFphot
dt

+
∑
j

Re[Aje
i(ωjt+δj)Ylj ,mj

(θ, φ)]

This equation has the free parameters of the convection zone, τ0 and N , as well as Aj, ωj,

δj, lj, and mj for each mode of oscillation. Additionally, there is the final free parameter

which measures the orientation of the axis of pulsation relative to earth (known as the

inclination angle θI). This final parameter comes into play when we attempt to create the

light curve predicted by this model. Fortunately, using the simple approximation of the star

as a spherical oscillator we can find each ωj, and we get a good starting guess for each δj
and Aj. Using mixing length theory, we can also find a good starting guess for N (namely

90-95 for DAs) and τ0.

Up to this point, Lcfit theta has only been fast enough to refine the initial guesses for

N , τ0, θI , A, and δ for each pulsation frequency. So users have to put in their own guesses

for l and m of each frequency. This strategy is tractable if you are fitting a star with a

small number of frequencies; however, for stars with many frequencies, this creates too many

possibilities to test. Not trying all the possible combinations calls into question the values of

the parameters we do fit, which is a shame as this technique is one of the only ways we can

probe l and m values of the pulsation modes. Better determining both the convection zone

size and spherical harmonics of the pulsation modes will help us improve our understanding

of the interiors of these stars.

This leaves two possible areas of improvement. First of all, we can make this fit as it is

implemented now run faster. To do this, we take advantage of the fact that, to accurately

model the flux we see, we need to break up the surface of the star into a grid of points

small enough that we can assume they have uniform temperature. Since we are solving the
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same equation on all of these grid points, we can speed up the simulation by solving this

equation for all the grid points concurrently on massively parallel architecture like multicore

computers and GPUs.

The second way to improve this fitting program is to programmatically fit the values of

l and m. One way to do this is to run the fit on a wide range of l and m values concurrently

on a machine with a large array of CPUs and/or GPUs. The TACC’s newest resource,

Stampede, has just such a heterogeneous architecture.

Designing a program to run efficiently on heterogeneous hardware with a variable num-

ber of CPUs and GPUs is by no means a solved problem. It is in fact a subject of ongoing

research, and one group at the University of Texas is working in collaboration with the Uni-

versity of Minho on a system for just this purpose (gamma cite). Their system is named

GAMA for the “GPU And Multi-core Aware” framework. This system provides memory

and resource management systems that dynamically balance the workload between all avail-

able resources. Users simply write a kernel (part of the algorithm that gets run repeatedly)

or two, if they need different implementations on the CPU and GPU, and a dice function

that receives resource statistics from GAMA and divides its workload into a list of jobs for

GAMA to schedule.

3.1.1. Description of GPU Implementation

To be compatible with GAMA, my implementation of the ordinary differential equation

solver had to compile with NVIDIA’s CUDA compiler. This required a complete rewrite of

the part of the program I was targeting to the GPU, namely the solution to the ordinary

differential equation.

To solve this part of the equation, I follow the same procedure as Montgomery. In order

to evaluate the accuracy of the parameters chosen, we must employ our model of the star over

the time it was observed, construct the light curve our model would create, and compare it

to the observed light curve. First, we note that only the part of the stellar surface that faces

us contributes to the light we receive in our telescopes. This part still has widely varying

temperatures across it, however. To take this into consideration, we must break the surface

into a grid fine enough that, within each section, the temperature doesn’t vary significantly.

Then, for each grid-point, we need to integrate over the ordinary differential equation from

a starting point (chosen to be the beginning of the first run) through the end of the final

run. To accomplish this I employed a library entitled “ODEInt” that was included in the

BOOST c++ libraries at the end of 2012. This library includes an implementation of the
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Dormand-Prince method, which is a fifth order Runge-Kutta style integration method. The

problem we are solving is known as an initial value problem, for which all you know is an

initial starting point and an expression to calculate the derivative of the function at any

given point. To calculate the derivative of the flux from our section of the star, we need to

first calculate the flux at the base of the convection zone. This means simply evaluating the

expression: ∑
j

Re[Aje
i(ωjt+δj)Ylj ,mj

(θ, φ)]

for our current values of Aj, δj, lj, and mj at the time (t) in question. The values for θ

and φ are determined by the grid-point (k). Calculating this flux directly, each calculation

performs surprisingly well. I also implemented a solution that involves calculating a grid of

solutions for the value of Fbase(k, t) and interpolating between them when solving the ODE.

A simple linear interpolation scheme produces a maximum speed-up of approximately 10%

over the integration with minor loss of accuracy (four times as inaccurate, but still of order

10−5). Any higher order interpolation schemes take longer than simply calculating the flux

directly. From this value we can compute the flux at the surface by applying the formula

derived above.

When we have integrated up to a time for which our light curve has a data point, we have

to sum up the contributions from each grid-point to get our simulated point. This process

is complicated by an effect known as limb darkening. This effect is due to the curvature of

the stellar surface we are simulating. Because of this curvature less flux from the edges of

the area we are simulating contributes than from the center. Limb darkening effects can be

parametrized as:

Fobs =
∑
k

µ(k, Fphot(k, t))× Fphot(k, t)

To solve account for this effect, I read in a grid of computed values for µ(k, Fphot) and

interpolate between them over the two dimensional space. Unfortunately, this grid is to

course for a bi-linear interpolation to give accurate results. I therefor employed the cubic

spline approach, following numerical recipies as was done in the CPU implementation.

3.2. Wu’s Approximation

Although this multithreaded implementation increases the speed of lcfit theta dramat-

ically, it still can take a long time to search all values of l and m. In order to reduce the

number of complicated fits needed, I implemented a simpler approximation that can find the

values of l and m that are likely to be a best fit.
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I took this formulation from the work of Wu in 2001 (cite). This approximation takes

the same form as the model of the flux at the base of the convection zone:

F =
∑
j

Re[Aje
i(ωjt+δj)Ylj ,mj

(θ, φ)]

It simply changes apparent amplitude (A) and phase (δ) of each witnessed mode to approx-

imate the effects of a convection zone of base size τ0 according to:

Aphot =
Afbase√

1 + (ωfbaseτ0)2

δphot = δfbase − arctan(ωτ0)

To implement this, I still divide the surface into a grid, but for each point I simply

calculate the flux at each timestep according to the above equations. I have also implemented

this fitting method with GAMA, so it can take full advantage of all the the host computer’s

resources while it is running. As it does not require an integration, this technique runs orders

of magnitude faster than the full integration.

Wu’s method does not always find the same values as ’best fit’ as the full integration,

however, it does seem to find better fits for the same values of l and m. In order to test this,

I have run both methods on a few stars simple enough to preform an exhaustive search with

the full integration method. So far it Wu’s method has identified all of the same of the values

that the full integration has identified. While this does not prove that Wu’s method will

identify the “best fit” according to the Montgomery’s method, it does give us a technique

for intelligently narrowing the set of l and m values that we calculate fully.

4. Targets and Data Acquisition

In order to test this theory I have chosen a number of targets that have been fit by

the linear version of lcfit theta, to judge the accuracy and performance enhancements of

my implementation. Those targets include: PG1351, G-2938, GD154, EC14012, WDJ1524,

and GD358. On top of that, however I have chosen a target that will test its capabilities,

HS0507+0435.

4.1. HS0507

This target tests the limits of my program as it has many more oscillatory modes than

the aforementioned stars, as well as a few closely spaced modes that require a few nights of
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data to resolve. This means it has a large set of parameters to fit, as well as a long time

period to integrate over on each fit.

This star was the subject of a recent paper by Fu et al. (who refer to the star as

HS0507+0434B). In this paper, Fu lists 18 independent frequencies as well as a number of

other signals due to the nonlinearities in the light curve. Fu includes a set of “preliminary

identification[s]” of the l and m values as well as a discussion of their constraints of these.

Using lcfit theta we can determine these values more reliably. Fu notes that in his runs

he found variation in the excited pulsation frequencies, and that “More observational data

and theoretical investigations are needed to explore the physical causes of those visibilities”.

Fu discussed data from runs starting in 2007 and 2009. I have worked with people at the

University of Texas, The Central Texas Astronomical Society, and [paul?] to reclaim 36-inch

telescope at McDonald Observatory to collect further data.

4.2. Instrumentation

I had a few problems setting up the 36-inch for science. We wanted to clone an ex-

periment that was running on the 82-inch telescope at McDonald Observatory. The system

started with a spare camera and acquisition computer from the 82-inch telescope. This equip-

ment had been used to develop the 82-inch system, so it should have been fully functional,

however, it hit a few snags on the 36 -inch. The first of these problems manifested itself as

an unusually high level of static on every image we took. By systematically switching out

components with their counterparts on the 82-inch telescope I was able to determine that

the problem was with the camera itself. The broken component turned out to be a small chip

that monitored temperature levels for the camera cooling system. Without this component,

the camera was not able to sense its own temperature, so it would not cool. The noise we

had seen was just thermal noise from the ambient room temperature. The mounting screws

used were a bit too long and had penetrated just far enough into the camera to hit this

component. Fortunately, this was a relatively inexpensive part, and we were able to order a

replacement.

The second problem we encountered manifested as a series of bands that appeared across

the image. This turned out to be a high frequency interference originating from the motor

that controlled the stepping of the telescope when tracking. The signal was passing along

the wire that transferred the analog image to the control box. As the frequency was high

we had to ground the control box to the telescope, by mounting it on the telescope directly.

Later that year, Argos, the camera used for out parent experiment on the 82-inch
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Fig. 4.— Observation of HS05057+0854 taken at the 36” telescope at McDonald Observatory

on December 12th 2012. The bottom graph is the measured values of the tracked stars. The

top graph is the brightness of HS0507+0835 corrected for cloud cover and instrumental

deficiencies, measured in 1
1000

ths of its average brightness.

telescope, broke. That meant the camera we had been using on the 36-inch, Raptor, had

to be re-appropriated. Fortunately, a new camera was purchased to replace the broken one.

As this camera was of a newer model, it did not work with the old acquisition software. In

order to use it, I developed a new acquisition system that could control it. This software

was fully capable of controlling the camera and running our experiment, however, it was not

able to communicate with the GPS timing system we had previously used. Fortunately, we

were able to adopt a system developed by Paul Chote that had a custom timing devices and

had been tested on similar observations.

Using this system I was able to gather data on HS0507 in December 2012 and March

2013. Data from the December run is reproduced in Figures 4 and 5

5. Data Analysis

Using the MAESTRO, WQED and Period04 programs, I have reduced the data from

the December run on HS0507. The Fourier Transform Produced is displayed in Figure 5.

From this data, I was able to find 10 frequencies as listed in Figure ??.
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Fig. 5.— Fourier transform of observations in Figure 4 and the next night. observations

were reduced separately and their ft’s were combined by Period04.

6. Remaining work

To complete this four year project, I need to finish setting up a system for specifying

what values of l and m to try for each frequency, and run it on my dataset (this will hopefully

give the punch thats missing right now).

7. Bibliography
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Fig. 6.— Frequencies found in 36-inch December run on HS0507 using Period04

Fig. 7.— Figure 5 after removing identified frequencies
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