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I. Introduction

MOOG is a FORTRAN code that performs a variety of LTE line analysis and spectrum
synthesis tasks. The typical use of MOOG is to assist in the determination of the chemical
composition of a star. Here is an introduction to MOOG. Its most recent public release was
in February 2017, but another iteration should be published at the end of 2019. See below
for instructions on downloading MOOG.

The basic equations of LTE stellar line analysis exist in a variety of literature sources and
will not be repeated here. The appendices of my PhD Dissertation (1973, Univ. of Texas at
Austin) quote and discuss these equations. The particular formulation employed in MOOG
follows the development of F. N. Edmonds, Jr. (1969, JQSRT, 9, 1427).

The coding is in various subroutines that are called from a few driver routines; all these
routines (files ending in “.f”) are written in fairly standard FORTRAN statements (com-
pilation with f77, g77, and gfortran should be routine). Most information intended to be
shared between subroutines is stored in a set of COMMON blocks (files ending in “.com”). I
have tried to stay away from a lot of machine-dependent coding, BUT! The standard MOOG
version available from me were developed and implemented on PCs (or laptops) running un-
der Redhat linux and Mac OS. There are a few areas of coding that might not be graciously
received by other operating systems and their associated FORTRAN compilers. To those
few of you who might such use alternate operating systems, good luck! If you find coding
solutions that will benefit the general MOOG user, let me know and I will incorporate them
into standard MOOG.

One of the chief assets of MOOG is its ability to do on-line graphics. This means, of
course, that the plotting commands are given within the FORTRAN code. Inevitably I had
to make a particular choice of plotting package. MOOG currently uses and supports only
sm (sometimes called SuperMONGO). This graphics package was chosen for its ease of
use and ability to do color graphics. The MOOG release with sm graphics is the only code
version that will be actively supported by us. The sm package is commercially available (see
http://www.astro.princeton.edu/∼rhl/sm/). It likely to survive for the foreseeable future,
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but other options are now becoming available (see XXX). Fortunately, the plotting calls are
deliberately concentrated in just a few routines, and it should be possible for users of other
graphics packages (e.g. pgplot) to substitute their own commands (remember, the desired
plotting routines must be FORTRAN-callable).

A more general cautionary note really needs to be taken to heart by all MOOG users.
This code, like all others of its type, makes opening assumptions about the kinds of stellar
atmosphere situations that it will face. It has certain internally-stored atomic and molecular
data that have been culled from various literature sources. And it includes, for example,
representations of the typical major opacity sources that are easily coded, and such rep-
resentations have proven to be adequate for most tasks. HOWEVER, it is the user’s
responsibility at all times to think about the computations! Tests need to be carried out
to verify the applicability of the MOOG calculations to particular spectroscopic problems.
Corrections to MOOG will be cheerfully carried out whenever they are brought to my at-
tention. But those who blindly use this code, publishing whatever numbers MOOG spits
out, will have only themselves to blame if abundances deduced with MOOG turn out to be
fundamentally flawed.

For the current MOOG release, some minor bug fixes have been attended to (as usual!),
and some serious internal structural alteration of the code has been accomplished in the
background. The program has been checked with the fairly restrictive Redhat linux FOR-
TRAN compiler. If MOOG works with this compiler and operating system, it probably will
not have problems with more liberal FORTRAN compilers.

Here is a list of recently added MOOG features:

• The EW abundance force-fitting driver “abfind” now can work on molecular lines
(thus re-implementing an older feature that was lost in recent versions of the code).
Of course, abundances from molecular lines cannot be derived without considering
molecular equilibrium. There must be some simplifying assumptions made for such
abundance computations to make any common sense, and here they are:

(a) For hydrides, the abundance of the “interesting” constituent atom (e.g. oxygen
for OH molecules) is the one whose abundance will be altered.

(b) For non-hydrides (e.g. CN) the user will be asked to specify which elemental
abundance to alter.

(c) Since molecular equilibrium calculations must be involved, the procedure has to
be done iteratively. First, molecular equilibrium will be done assuming the input
abundances of constituent atoms. After force-fitting the EW data, then at the
user’s option the average abundance from the given species will be input into the
molecular equilibrium routine and the EW computations done anew. The process
can be repeated until the mean output abundance agrees with the abundance
input into the molecular equilibrium computations.

• A small additional plotting capability is the ability to display an observed spectrum
as a histogram. The command in the parameter file is cleverly called histogram.
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• Internally, the coding that takes important information from the molecular equilibrium
routine and makes it available to other parts of MOOG has been completely rewritten
to make the process more clear and coherent. A new subroutine has been added for
this.

• MOOG has been altered to allow it to compute spectra from line lists that include
H2O and CO2. Internally this has involved special coding for the partition functions
for these triatomic molecules, special coding for their number densities, and cleanup
of output “write” statements. There should be no need for the user to alter input
line lists (that is, as in the past molecular species are designated by concatenating two
digits per atomic component, so H2O = 10108.0 and CO2 = 60808.0.

• Synthesis and equivalent width matching options have been added for entire stellar
populations, according to the method outlined in McWilliam & Bernstein (2008, ApJ,
684, 326). These techniques are designed for integrated light analyses of unresolved
targets, and require an input table of atmospheres. Different abundances and/or iso-
topic ratios can be assigned to different “boxes” of stars, if desired.

The rest of this write-up is divided into these sections: II, instructions on how to obtain
and implement MOOG; III, instructions on how to run MOOG; IV, examples of the necessary
“parameter” files; V & VI, how to construct model atmosphere files, and examples; VII,
explanation of the input tables for the population options; VIII, explanation of the line data
files, and examples; IX, brief descriptions of the functions of each MOOG subroutine; X, a
look at common-block variable names; and XI, one example of a “Makefile”; and X, adapting
MOOG in user-controlled inputs and outputs.

Many thanks to Niall Gaffney and Danny Hiltgen for writing some of the MOOG subrou-
tines. I also thank MOOG users (especially Ann Boesgaard, Natalie Hinkel, Inese Ivans, Caty
Pilachowski, Ian Roederer, Jennifer Simmerer, David Yong; many others also) for testing
recent MOOG versions and giving important suggestions to improve the code.

II. Obtaining and Implementing MOOG

The currently supported MOOG version is available for downloading at:

http://www.as.utexas.edu/$\sim$chris/moog.html

Clicking the live MOOGNOV2019 button will give you a gzipped tar file that will open
up a directory with the code and other files when you execute:

tar -zxvf MOOGNOV2019.tar

Now the code can be compiled. First you must modify Moog.f in 2-3 ways:

1. On or about line 21, put in the correct machine path to the directory on your machine
where moog resides, “moogpath = xxx/xxxx/....”
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2. On or about line 29, declare your machine type from the available choices, “machine
= zzz”

3. (If desired) on or about lines 36 and 38, adjust the plotting screen sizes for your
particular machine.

Now compile the .f files and link them together with appropriate libraries such asX11R6, sm,
etc. You must understand that the the “Makefile”s included with the MOOG package have
suggested link sequences, but the libraries on your machine may (almost surely will) be dif-
ferent. Your simplest move here is consultation with your system guru for the correct library
linking sequence.

III. Executing MOOG

To run MOOG, simply type “MOOG” on your machine in the appropriate directory. The
program will then ask you questions about various input and output files. The first question
always will ask for the name of the “parameter file” in which you have specified which driver
to use. Depending on that driver specification, MOOG will ask for other files. It is always
necessary to input a “model atmosphere file”, and almost always a “line data file”. Other
files will be called for as needed, including several output files that can be new names or the
names of old files that are to be overwritten.

The output plotting medium is designated by a character or number string for “device”.
It’s default is “x11”. Consult the sm manual for other options.

The parameter file is an important component of a MOOG run. This file tells MOOG
which driver to use, how to process the data, and how to output the results. A parameter
file can be given any name the user desires; traditionally I have given the name as “some-
thing.par”. There are a lot of options that the user can invoke in commands that appear
in the parameter files! However, don’t be intimidated by this: many of the commands (e.g.
histogram) are entirely optional, and the program can happily run without specifying them.

The first line of the parameter file is the name of the driver program to be used. The
driver is kind of a “master program” which calls the various subroutines that make up
MOOG. The current drivers are:

synth → spectrum synthesis, varying atomic abundances
plotit → re-plotting of spectra that were created in a prior run
abfind → force-fitting abundances to match single-line equivalent widths
blends → force-fitting abundances to match blended-line equivalent widths
binary → spectrum synthesis of a finary star individual lines
cog → curve-of-growth creation for individual lines
gridsyn → mass production of synthetic spectra
weedout → segregation of very weak lines from stronger ones in a large line list
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cogsyn → curve-of-growth creation for blended features
ewfind → calculation of equivalent widths of individual lines
calmod → converting a BEGN tauross model to an equivalent tau5000 scale
doflux → plot the overall flux curve of the model atmosphere
synpop → spectrum synthesis for a stellar population
abpop → equivalent width matching for a stellar population
mydriver → dummy driver; user can substitute a specialty driver with

this subroutine name

After the driver is named, the user may set values for any of the following parameters.
A given parameter line consists of a “keyword” (maximum of 10 characters) and either an
integer (maximum five digits), or a character string. For character strings to be correctly
understood, it is always best to surround them with single quotes; see examples later. The
current keywords and acceptable values are listed below. Default values of the parameters
are marked with an asterisk (*).

RUN: a counter on mutiple syntheses used only by the binary and gridsyn drivers

atmosphere: controls the way the model atmosphere is shown on the standard output file

0 do not output the atmosphere
* 1 output standard information about the atmosphere

2 output more details (continuous opacity factors, etc.)

molecules: controls molecular equilibrium calculations

* 0 do not do molecular equilibrium
1 do molecular equilibrium but do not output results
2 do molecular equilibrium and output results

trudamp: should more detailed damping calculations for transitions be done if data exist
in MOOG?

0 no, stick with the standard damping formulae
* 1 sure, why not? It’s a black art anyway!

lines: controls the output of the line data:

0 output nothing about the input lines
* 1 output standard information about the input line list

2 output line opacities at line centers
3 output information about mean depth of line formation
4 output the partition functions

terminal: “terminal type”. This is the only parameter which must be declared differently
in sm and LickMONGO versions of MOOG. To find the appropriate parameter value
for your use, consult the manual or on-line he/elp for these MONGO versions. The
most popular terminal types for UT Astronomy Department use are:
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* 0 MOOG will query the user for the desired terminal type
7 Sunview (LickMONGO)
11 Sun OpenWindows, or any X11 (LickMONGO)
13 Graph-on 200 series, or any VT/Retrographics (LickMONGO)
x11 Sun OpenWindows, or any X11 (sm)
xterm xterm tektronix window (sm)
sunview SunView window (sm)
graphon graphon GO-250 (sm)

flux/int: specifies integrated flux or central intensity calculations:

* 0 perform integrated flux calculations
1 perform central intensity calculations

damping: van der Waals line damping parameter options (N.B. There are “standard”
internal approximations in MOOG for radiative and Stark broadening; the next MOOG
iteration ought to allow those to be input by the user):

* 0 use the Unsold approximation, BUT: if a factor is read from the line list
for an individual line, then if the factor is greater than 10−10, multiply
the Unsold value by the factor, otherwise replace the Unsold value by
the factor

1 use the Unsold approximation multiplied by 6.3
2 use the Unsold approximation multiplied by a factor

recommended by the Blackwell group

units: specifies what wavelength units MOOG will use mainly for output purposes. All
input wavelengths must be consistently in Ångstroms or µm. Values of this parameter
can be:

* 0 Angstroms
1 microns

abundances: abundances to override those set during the model atmosphere input. This
option is generally useful only for the “synth” driver. There are two required numbers
on the line with this keyword; their meanings are:

i # of elements that diverge from the preset abundances
j # of different syntheses to be run (maximum=5)

FURTHER EXPLANATION: The lines that follow the “abundances” keyword line con-
tain the information for adjusting the abundances. There must be “i” lines. Each line
must contain first the atomic number of the element, then “j” logarithmic abundance
differences from the preset values. If one of the elements is called 99, the program
understands that the user wishes to vary ALL elemental abundances by the named dif-
ferences in the syntheses.
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synlimits: the wavelength parameters for syntheses. Only the keyword appears on this
line. Then on the next line, four parameters must appear in the following order:

a the beginning synthesis wavelength/frequency
b the ending synthesis wavelength/frequency
c the wavelength/frequency step size in the synthesis
d the wavelength/frequency ±∆ from a spectrum point to

consider opacity contributions from neighboring transitions

The wavelength units are those consistent with the “units” keyword.

fluxlimits: the wavelength parameters for syntheses. Only the keyword appears on this
line. Then on the next line, four parameters must appear in the following order:

a the beginning flux curve wavelength
b the ending flux curve wavelength
c the wavelength step size for the flux curve

The wavelength units are those consistent with the “units” keyword.

coglimits: set the log(W/λ) parameters for curves-of-growth. Only the keyword appears
on this line. Then on the next line, either the first three parameters or all five of
parameters must appear in the following order:

a the log(W/λ) lower limit for the c-o-g
b the log(W/λ) upper limit for the c-o-g
c the log(W/λ) step size for the c-o-g
d an explicit line profile wavelength step size, if desired
e the element whose abundance is desired to be varied, in a blended line c-o-g

If “e” is entered, then “d” must be put in (choose a zero for this if you wish to let
MOOG decide the line profile wavelength step size.

blenlimits: set the parameters for blended line abundance matches. Only the keyword
appears on this line. Then on the next line, the following three parameters must
appear in the following order:

a ∆λ blueward of the first feature and redward of the last features
of the blend to extend the synthesis calculations

b the wavelength step size of the syntheses
c the element whose abundance is desired to be varied in order to match the

blend EW

obspectrum: indicates the type of the input observed spectrum

* 0 no observed spectrum will be input
1 a true FITS file
-1 a true FITS file
3 a true FITS file to be read with FITSIO (under development)
5 an ASCII file, with lambda as x-coord, flux as y-coord

iraf: allows the user to write an IRAF-readable output unsmoothed spectrum
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* 0 no IRAF output spectrum with be generated
1 generate a spectrum able to be read by IRAF’s “rtext’

plot: type of plot output (if any)

* 0 do not make a plot
1 plot only synthetic spectra (synthesis driver only)
2 plot synthetic and observed spectra (synthesis driver only)
n minimum # of species lines to generate a plot (abundance fit driver only)

isotopes: lists isotopes and isotopic ratios to be used. This option is generally useful only
for the synthetic spectrum driver. There are two required numbers on the line with
this keyword; their meanings are:

k # of number of isotopic ratios to be set
l # of different syntheses to be run

FURTHER EXPLANATION: “l” will take a maximum of 1 if driver “synth” is used
(in other words, set one isotope ratio for all syntheses), and a maximum of 5 otherwise.
The lines that follow the “isotopes” keyword line contain the information for adjusting
the isotopic ratios. There must be “k” lines. Each line must contain first the floating
point number identifying the isotope (so that features of that isotope appearing in the
line data file may be identified). This must be given in a particular manner, or MOOG
will be very confused. To the left of the decimal point there are the two digits of the
atomic number of the atom or the four digits or the atomic numbers of the diatomic
molecule. The first digit to the right of the decimal point is the ionization state (0
= neutral, 1 = first ion, etc.). Following that are the three digits for the atomic
mass of the elemental isotope or the four digits of the isotopic masses of the molecular
constituents. For a molecule, the convention further is that the lightest element of
the pair is specified first. Thus for example, “608.01316” is how one must designate
a CO molecule composed of C13 and O16. In this case one could then designate the
ordinary CO molecule as “608.00000”, but then MOOG would take internal-stored
atomic masses; better to write “608.01216”. And to take an atomic example, for Li6

write “3.006”, and for Li7 write “3.007”. After this atomic or molecular identifier
should come the parent-to-isotope ratios (understand?); there must be “l” of these on
each line. For an atomic example, an ionized line of the Eu153 is written 63.1153.

NOTE A FUNDAMENTAL LIMIT: this style of identifier cannot handle a molecular
isotope in which one of the atomic constituents has a mass greater than two digits!
Such needs will be taken care of in a future MOOG release. For now, I suggest that
the user hard-wire in some recognition of such an identifier if the need ever occurs.

opacit: a fudge factor to play with the nominal continuous opacity values at a given wave-
length

* 0 no fudge factor is to be applied
a multiply the nominal continuous opacity by a factor: 10000×a/T

where a is a number >0 and T is the temperature of a given atmosphere layer.
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freeform: line list reading options

* 0 Read the line list in the old (7e10.3) formatted manner; blanks are read as
zeros

1 Use unformatted reads for the line list; all values must be explicitly given,
even zeros

strong: is there a separate line file for “strong” lines whose opacity contributions are to
be considered a every wavelength step in a synthesis?

* 0 no, only a standard line data file is to be input
1 yes, ask the user for a separate file of strong lines

plotpars: allows the user to set all of the plotting parameters if they are reasonably well
known in advance. It can have two values:

* 0 use default plotting parameters, and manually adjust by looking at the plot
1 set the default plotting parameters in the next three lines

OK, so if you choose option “1” of this keyword, you now must immediately put three
more lines in the parameter file. On the first line, four parameters are required:

a left edge (wavelength/frequency units) of the plot box
b right edge (wavelength/frequency units) of the plot box
c lower edge (relative flux units) of the plot box
d upper edge (relative flux units) of the plot box

On the second line, four parameters are required:

e a velocity shift to be applied to the observed spectrum
f a wavelength shift to be applied to the observed spectrum
g a vertical additive shift to be applied to the observed spectrum
h a vertical multiplicative shift to be applied to the observed spectrum

On the third line, six parameters are required:

i a one-character smoothing type for the synthetic spectra
j the full-width-at-half-maximum of a Gaussian smoothing function
k vsini of a rotational broadening function
l limb darkening coefficient of a rotational broadening function
m the full-width-at-half-maximum of a macrotrubulent broadening function
n the full-width-at-half-maximum of a Lorentzian smoothing function

Permissible smoothing types are g (Gaussian), l (Lorentzian), v (rotational), m (macro-
turbulent), several combinations of these, and p (variable Gaussian). Just enter zeros
for any of the parameters that are not needed for chosen smoothing types.

histogram: allows display of an observed spectrum as a histogram
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* 0 do not do a histogram; simply connect the points instead
1 do a histogram for the observed spectrum

On the parameter options given on this page, note that the string can either be a simple
file name, or it can be the file name with a path attached at the beginning, so that files not in
the current directory can be accessed. It is important to understand that if you specify one
of the output files in the manner below (rather than letting MOOG prompt you for output
file names as it runs) then no previous file name check will be done! That is, if you specify
a file that already exists, the new MOOG run will write over the old file. So if you want to
guard against that, don’t specify the output files in your parameter file; let MOOG query
you at run time. If you don’t care about over-writing, then using these commands may save
you time and aggravation. For the input files, if you specify a non-existent file name, then
MOOG will ask you for the right name as it runs.

standard out ‘string’ the filename for the standard
summary out ‘string’ the filename for the EW summary OR the raw synthesis output

smoothed out ‘string’ the filename for the smoothed synthetic spectrum output

iraf out ‘string’ the filename for the smoothed synthetic spectrum output to
be used in IRAF

summary in ‘string’ the filename for the raw synthetic spectrum (made previously)
read in for plotting

model in ‘string’ the filename for the input model atmosphere

lines in ‘string’ the filename for the input line list

stronglines in ‘string’ the filename for the input strong line list

observed in ‘string’ the filename for the input observed spectrum

table in ‘string’ the table of model atmospheres (for abpop or synpop)

table out ‘string’ the output information (for abpop or synpop)

IV. MOOG Inputs: Parameter File Examples

The first example is one that will produce a synthesis of a 20 Å stretch of spectrum,
including the [O I] feature at 6300 Å. In the three syntheses requested, the O abundance
will be varied from that specified in the model atmosphere input by –0.5, 0.0, and +0.5 dex.
Both the synthetic spectra and an observed spectrum will be displayed, with the plot set to
the parameters specified by plotpars.
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synth

standard_out ’out1’

summary_out ’out2’

smoothed_out ’out3’

model_in ’../models/K634.mdf’

lines_in ’lin6305’

observed_in ’K634.6280rd’

terminal ’x11’

atmosphere 1

molecules 2

lines 1

flux/int 0

plot 2

abundances 1 3

8 -0.5 0.0 0.5

synlimits

6290.0 6310.0 0.02 1.00

obspectrum 1

plotpars 1

6290.0 6310.0 0.40 1.03

0.0 0.000 0.000 1.00

g 0.25 0.00 0.00 0.00 0.00

The second example is one that will do abundance force-fits to equivalent widths of
individual (clean) lines of one or more species. Plots of the abundances versus (a) excitation
potential, (b) reduced equivalent width, and (c) wavelength will be done (only) if four or
more lines are present in the line list for a given species.

abfind

terminal ’x11’

standard_out ’out1’

summary_out ’out2’

model_in ’modhm’

lines_in ’linsol.mine’

atmosphere 1

molecules 2

lines 1

freeform 0

flux/int 0

damping 1

plot 4

The third example is one that will produce a set of synthetic spectra. All parameters
before the first “RUN” statement will be assumed for all syntheses. The ones after are those
for the specific RUN. Note however that if the runs involve more than one abundance or
isotopic choice, those must be stated for each RUN.

gridsyn

terminal "x11"

standard_out "out1"

smoothed_out "out3"

atmosphere 1

molecules 2

lines 1

strong 1

flux/int 0

damping 1

plot 0

RUN 1

model_in "models/t7000g220mm005v300alp040.mod"

summary_out "synspec/t7000g220mm005v300alp040.rawblu"

lines_in "linelists/lin4537good"

stronglines_in "linelists/strong4537"

synlimits

4399.0 4676.0 0.01 0.60

RUN 2
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model_in "models/t7000g220mm005v300alp040.mod"

summary_out "synspec/t7000g220mm005v300alp040.rawyel"

lines_in "linelists/lin5300good"

stronglines_in "linelists/strong5300"

synlimits

5149.0 5451.0 0.01 0.60

RUN 3

model_in "models/t7000g220mm010v300alp040.mod"

summary_out "synspec/t7000g220mm010v300alp040.rawblu"

lines_in "linelists/lin4537good"

stronglines_in "linelists/strong4537"

synlimits

4399.0 4676.0 0.01 0.60

The fourth example is one that will allow the user to “clean out” ridiculously weak lines
from a very large initial line list. This is an impirical approach in which the user needs
to set the line/continuum opacity ratio, after consulting the “strength” column in large
standardout file in running this option.

weedout

terminal ’x11’

standard_out ’out1’

summary_out ’out2’

smoothed_out ’out3’

model_in ’models/FINALMODEL’

lines_in ’linelists/h2o21700’

keeplines_out ’keep’

tosslines_out ’toss’

atmosphere 1

molecules 2

lines 1

flux/int 0

damping 1

V. MOOG Inputs: Model Atmosphere File Explanations

The subroutine “Inmodel.f” does the work of reading in model atmosphere data. Please
consult that code to clear up questions that are not dealt with here. Examples of model
atmosphere input files are given in the next section; compare those examples to what is said
in this section. There are four different types of model atmosphere input that currently may
be handled by MOOG. In any model atmosphere file, the first three lines of information are
always the same:

• line 1: a left-justified keyword that clues in MOOG to which atmosphere type is about
to follow. Permissible model type keywords are:

1. KURUCZ, for models generated with the ATLAS code

2. BEGN, for models generated with the MARCS code

3. KURTYPE, for ATLAS-generated models that come without continuous opacities
even though they are on a “rhox” depth scale (this is a specialized model type)

4. KUR-PADOVA, for models with quantities arranged in a way for input from the
Padova Observatory ATLAS program
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5. NEWMARCS, for newest MARCS models

6. GENERIC, for models that have a “tau” depth scale but no corresponding con-
tinuous opacities.

• line 2: a comment line; it has no computational purpose, but will appear on various
plots and outputs, so take the time to make this line informative!

• line 3: the number of depth points. This is an integer ≤76 that can be put in any
spaces after the first 10 spaces of this line.

The next set of lines (whose count depends on the number of atmosphere layers, hereafter
called “ntau”) are devoted to the model atmosphere physical quantities. These are slightly
different in each model type case, and thus the data will be as follows (choose one):

• if model type is KURUCZ, each of the next ntau lines contains these quantities in the
following order: ρx, T, Pg, Ne, κRoss. Here, all quantities have their usual meanings
(ρx≡rhox), and κ is a Rosseland mean opacity on a mass scale. The proper way to get
these data is simply to take the direct summary output from an ATLAS run. MOOG
is supposed to be clever enough to distinguish between the Pg and its logarithm, and
between Ne, Pe or either of their logarithms, without any user intervention.

• if model type is BEGN, each of the next ntau lines contains these quantities in the
following order: τRoss, T, Pg, Ne, µ, κRoss. Here, in addition to the remarks for
KURUCZ models, note that µ is the mean molecular weight. The proper way to get
these data is simply to take the direct summary output from a MARCS run.

• if model type is KURTYPE, it is first necessary to have a line that declares the wave-
length at which the reference opacity and optical depths will be computed (typically
this is set to 5000 Å). Then each of the next ntau lines contains these quantities in the
following order: ρx, T, Pg, Ne. See remarks for the KURUCZ models, but note that
in this case MOOG will compute internally κref and τref at λref .

• if model type is KUR-PADOVA, it is first necessary to have a line that declares the
wavelength at which the reference opacity and optical depths will be computed (typ-
ically this is set to 5000 Å). Then each of the next ntau lines contains the ATLAS
model quantities τref , T, κref , Ne, Pg, and ρ.

• if model type is NEWMARCS, each of the next ntau lines contains in order τRoss, T,
Ne, Pg, ρ, vturb, and κRoss.

• if model type is GENERIC, the input model is done as in KURTYPE, but instead of
the ρx depth variable it is necessary to have τref . This τref is assumed to have been
computed at λref (in other words, it is not a Rosseland mean opacity). MOOG will
compute internally κref at λref .

The next input data are the microturbulence value(s). This must be a formatted read!
The format is 6e13 (6 numbers maximum per line, each taking 13 spaces, with decimal points
required). There are two options for this input:
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• if only a single number appears in the first 13 spaces, then this is assumed to be the
microturbulent velocity for all atmosphere layers. The units of this number may either
be km s−1 or cm s−1; MOOG should be able to figure it out.

• if more than one number appears, it is assumed that there will be a depth-dependent
microturbulent velocity! In this case, it is necessary to designate ntau values of the
microturbulence, six per line, for as many lines as it takes.

The next input data are the abundances. MOOG internally stores the “solar” abundance
set of Asplund et al. (2009, ARA&A, 47, 481). The abundances are given as log ε values,
where log ε(X) ≡ log(NX/NH) + 12.0. Here is how stellar abundances are set up in the
model atmosphere file:

• the first line contains two numbers. These numbers may exist anywhere on the line
after the first 10 spaces. The first is the number of elements (hereafter called natoms)
whose abundances are to be explicitly designated on the following lines. The second is
the overall metal deficiency, in the standard [M/H] notation:

[M/H] ≡ log10(NM/NH)star − log10(NM/NH)�.

Here, “M” is any element whose abundances is not to be explicitly input; MOOG will
add [M/H] to all internal Asplund et al. (2009) abundances for elements not entered
below.

• the next set of lines (as many as needed) contain natoms pairs of (atomic number,
log ε) values. The log ε’s for these elements override MOOG’s internal abundances,
and override any overall metallicity [M/H]. This is a free-form read; one can put as
many of these number pairs on a line as desired, up to natoms.

The final input data are the names of the molecules to be included in any molecular
equilibrium calculations. If the user in the parameter file has set “molecules” equal to zero,
then forget it! No molecular equilibrium is to be done, no more data from the atmosphere
file will be read in. But assuming that the “molecules” keyword has been set to 1 or 2, then
here is how the user designates the molecules to be considered:

• the first line contains the number of molecules to take part in molecular equilibrium
computations; hereafter that number is called nmol. The number may appear on the
line anywhere after the first 10 spaces.

• on succeeding lines (as many as needed) the molecule names are to be listed; as many
as one likes may be put on one line. The molecule names are concatenations of the two-
digit atomic numbers of the constituent elements, with the rule of increasing atomic
number from left to right in the name. For examples: H2 is designated 101 (the
leading zero is dropped); CO is 608; CO2 is 60808. In the equilibrium computations,
the neutral atoms will be put in automatically, but if the user wishes to have ionized
atoms considered, they must be designated explicitly. An example is the case of MgH,
in which much of the Mg exists as Mg II. In this case the user might wish to have
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four species in the Mg equilibrium: Mg I, Mg II, MgH and MgO. For this, it will be
necessary to designate 12.1, 112, and 812 in the model atmosphere file at this point
(the neutral atom, 12.0, will be put in automatically).
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VI. MOOG Inputs: Model Atmosphere File Examples

The first example is for a MARCS model.

BEGN

A MARCS model for 4800/2.70/+0.18

NTAU 34

1.0000e-04 3.4356e+03 2.0960e+00 -2.2620e+00 1.3050e+00 .7300e-03

2.0000e-04 3.4995e+03 2.2020e+00 -2.1160e+00 1.3050e+00 .9651e-03

. . . . . .

. . . . . .

7.9433e+00 7.8062e+03 4.4170e+00 2.4290e+00 1.2910e+00 .3921e+00

1.0000e+01 8.0262e+03 4.4230e+00 2.5640e+00 1.2870e+00 .2040e+00

2.5e+05

NATOMS 1 +0.18

7.0 8.20

NMOL 12

101.0 106.0 107.0 108.0 606.0 607.0 608.0 707.0

708.0 808.0 10108.0 60808.0

The vertical dots shown above represent 30 missing (unprinted) atmosphere layers. This
model is for a metal-rich ([M/H] = +0.18) K-giant star. MOOG realizes automatically Pg

(the third number on the line for each of the model atmosphere layer) is actually log Pg, and
that Ne (the fourth number) is actually log Pe. The abundance of nitrogen is set to log ε(N)
= 8.20. The microturbulence is 2.5 km s−1 at all atmosphere layers. Molecular equilibrium
computations will include 12 common molecules of the HCNO element group. Note that
the number of atmosphere layers, the number of elements with special abundances, and the
number of molecules begin after the first 10 spaces of their input lines, so that one can type
NTAU, NATOMS, and NMOL as guides to what those numbers represent.
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The second example is for a KURUCZ model. Mostly it is self-explanatory. The last
number (0.00E+00) on each model atmosphere layer line is never read by MOOG. The other
numbers on these lines are, in order, ρx, T, Pg, Ne,κRoss, and the radiative acceleration (not
used by MOOG). Note the more extensive molecular equilibrium network that has been
requested.

KURUCZ

Teff= 5750.0 Log g= 4.90

NTAU 40

.78541897E-02 3322.1 0.624E+03 0.218E+11 0.407E-02 0.203E+00 0.000E+00

.10917768E-01 4105.3 0.867E+03 0.127E+12 0.524E-02 0.140E+00 0.000E+00

. . . . . .

. . . . . .

.39326713E+01 13713.0 0.312E+06 0.483E+17 0.692E+03 0.143E+04 0.000E+00

.39561312E+01 14935.5 0.314E+06 0.576E+17 0.756E+03 0.156E+04 0.000E+00

.11E+06

NATOMS 2 0.0

3.00 3.30 20.00 6.26

NMOL 19

606.0 106.0 607.0 608.0 107.0 108.0 112.0 707.0

708.0 808.0 12.1 60808.0 10108.0 101.0 6.1 7.1

8.1 822.0 22.1
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VII. MOOG Inputs: Model Atmosphere Tables

For analyses of entire stellar populations, the stars in a population can be grouped to-
gether into “boxes,” each with an average Teff , log g, and ξ. MOOG must be fed a table
identifying the model atmospheres and specifying parameters (for up to 99 boxes). This
table must include:

1. The names of the model atmospheres for each box; these atmospheres must have the
same starting prefix, and must be numbered according to the order in which they
appear in the table (e.g., Box 1 might have an atmosphere named MODEL1, and Box
2 would then have an atmosphere named MODEL2).

2. Stellar radii for each box, in Solar radii.

3. The number of stars that appear in each box.

The following example shows an input population table for “abpop” driver:

abpop

modprefix MODEL

synprefix mod

title 47Tuc models

models

1 77.85 3

2 70.45 2

3 61.74 3

The parameters of the file are described below:

• The first line, abpop, tells MOOG that an equivalent width analysis will be performed.
The driver must be listed as the first line of the file.

• The “modprefix” line tells MOOG the prefix for the model atmosphere file names. In
this example, the model atmosphere for Box 1 is MODEL1, etc.

• The “synprefix” keyword provides the prefix for the output files for each box. Here the
outputs will be mod1, mod2, mod3, etc.

• The “title” will be the description that is displayed in each plot and that is provided
in the output files.

• The “models” line tells MOOG that the next lines will contain the parameters for the
boxes.

• The next lines contain information about each box. In order, this information is the
box number, the average stellar radius of the stars in that box, and the number of stars
in each box.
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The format is similar for spectrum syntheses of composite spectra from stellar popula-
tions:

synpop

modprefix MODEL

synprefix mod

title 47Tuc models

abundances 5

11 6 7 13 12

isotopes 2

607.01214 607.01314

models

1 77.85 3 5.00 6.50 8.50 4.0 6.0 1.0 30.0

2 70.45 2 5.00 6.50 8.50 4.0 6.0 1.0 30.0

3 61.74 3 5.00 6.50 8.50 4.0 6.0 1.0 30.0

In addition to the parameters described above, the synpop routine has a few more options:

• The “synpop” driver must be declared in the first line of the table.

• The “abundances” keyword tells MOOG that the user wants to overwrite any abun-
dances in the model atmosphere file. The number of abundances the user will vary
must be specified following the abundances keyword, and the elements must be spec-
ified on the next line. In this example Na, C, N, Al, and Mg are being altered. The
log ε abundances are then given for each box in the models lines following the number
of stars in each box (e.g., log ε(Na) = 5.00, log ε(C) = 6.50, etc.). The abundances can
be different for each box.

Note that when [X/Fe] offsets are provided in the parameter file, the offsets are cal-
culated relative to these abundances in the table file. Any box-to-box abundance
differences will be retained.

• The “isotopes” keyword tells MOOG that the user wishes to overwrite the inverse
isotopic fractions provided in the parameter file. As with the “abundances” keyword,
the number of isotopic ratios must be specified following the “isotopes” keyword. In
this example, two CN isotopic fractions are varied: the C12N14 and C13N14 ratios. The
inverse fractions are then listed for each box, after any special abundances (in this case,
after the the Na, C, N, Al, and Mg abundances). Again, the isotopic fractions can be
different for each box.

Note that when the isotopic fractions are changed interactively within MOOG they
will overwrite the values in the table file, and all boxes will be given the same isotope
ratios.
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VIII. MOOG Inputs: The Line Data File

In this file one designates all of the spectral features to take part in MOOG computations.
The quantities desired are very straightforward, with only a few variations that depend on
the particular MOOG driver to be employed. The file always begins with a comment line
which has no computational function. But like the atmosphere comment line, this line will
be displayed in various plots and output files, so it pays to make it fairly informative. Then
on succeeding lines of this file, spectral feature data are entered in either a formatted (7e10)
or an unformatted manner, depending on the value of freeform in the parameter file. MOOG
can hold the data for up to 500 spectral lines in memory at any one time. Thus for deriving
abundances by force-fitting equivalent widths, there should be ≤500 lines per species. For
doing synthetic spectra, there should be ≤500 lines included in the line opacity calculations
at any one wavelength step. (MOOG will complain if you exceed that limit, so in such rare
cases either decrease the wavelength interval to include lines in such computations, or modify
MOOG internally to expand beyond the 500 line limit). Here are the line list inputs; the
order of their appearance cannot be changed.

• wavelength, always in Å: For the driver “blends”, the wavelength of the first feature
of a blend has a positive sign, and the wavelengths of the rest of the features of the
same blend have negative signs. In all other cases the sign of the wavelength is always
positive.

• atomic or molecular identification, as described before: a two digit or concatenated
two-digit designation to the left of the decimal point, and a single digit to the right of
the decimal point to represent the ionization stage (0 = neutral, 1 = singly ionized,
etc.).

• line excitation potential, always in electron volts (eV).

• gf, or log(gf); MOOG figures out which form it is dealing with by looking for a negative
value for any one of the entries for gf.

• the van der Waals damping parameter C6, or a factor to multiply an internally gen-
erated C6 value; this quantity is optional, and may be left blank in formatted reads.
See more information in the discussion on the “damping” option of the parameter file.

• the dissociation energy D0 (in units of eV) for a molecular feature; this quantity is
irrelevant for atomic features, and may be left blank in formatted reads. The reason
for requiring this quantity is that the dissociation energy for some molecules is still
somewhat uncertain, so the user is forced to enter a favorite value.

• the equivalent width, either EW in units of mÅ, or RW [≡log(EW/λ)]. This quantity
is only needed for those drivers that force-fit abundances to input equivalent widths,
and so may be left blank in formatted reads.

As a first example of a formatted line data file, here is part of a line list that would
be used to generate synthetic spectra of an [O I] line. MOOG realizes that it is receiving
gf’s, not log(gf)’s since all values of this quantity are positive. It will be looking for the
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dissociation energy (= 7.65 eV here) each time that it encounters a CN feature. The last 10
columns are comments only, and are ignored.

A line list near the [O I] feature

6299.610 24.0 3.84 1.00E-3

6299.660 40.0 1.520 1.585E-1

6299.691 607.0 0.23 4.34E-3 7.65 12Q2314,0

6300.265 607.0 1.28 5.78E-3 7.65 12R11410,5

6300.310 8.0 0.00 1.78E-10

6300.336 28.0 4.266 1.000E-3

6300.482 607.0 1.31 6.82E-3 7.65 12R21810,5

6300.482 607.0 1.24 2.01E-3 7.65 12Q10210,5

6300.698 21.1 1.507 1.200E-2

And here is how the same list might look with an unformatted read.

A line list near the [O I] feature

6299.610 24.0 3.84 1.00E-3 0. 0. 0.

6299.660 40.0 1.520 1.585E-1 0. 0. 0.

6299.691 607.0 0.23 4.34E-3 0. 0. 7.65 12Q2314,0

6300.265 607.0 1.28 5.78E-3 0. 0. 7.65 12R11410,5

6300.310 8.0 0.00 1.78E-10 0. 0. 0.

6300.336 28.0 4.266 1.000E-3 0. 0. 0.

6300.482 607.0 1.31 6.82E-3 0. 0. 7.65 12R21810,5

6300.482 607.0 1.24 2.01E-3 0. 0. 7.65 12Q10210,5

6300.698 21.1 1.507 1.200E-2 0. 0. 0.

As a second example of a line data file, here is a short list of lines for which equivalent
widths will be used to derive abundances for elements C, Sc, Ti, Fe (from two different
species) and Nd. A formatted read is assumed.

AR Per 1

5380.322 6.0 7.68 -1.760 70.5

5640.988 21.1 1.50 -1.010 111.8

7949.149 22.0 1.50 -1.404 56.9

4779.984 22.1 2.05 -1.370 181.2

6301.500 26.0 3.65 -0.720 100.0

7583.796 26.0 3.02 -1.990 76.8

4893.817 26.1 2.83 -4.450 54.6

5249.590 60.1 0.98 0.210 79.4

As a third example of a line data file, here is a short list of lines to be used in a spectrum
synthesis of the CH G-band. Both isotopic forms of molecular lines are considered in this
list. The isotopic ratios must be given in the “synth” or “isotop” driver, and the molecular
names must agree exactly with those specified in the line list (see the conventions for writing
these names in discussion of the “isotopes” parameter of the parameter file.

A CH synthesis list

4195.423 106.00112 1.150 4.39E-02 3.47

4195.519 28.0 4.09 4.375e-01

4195.618 26.0 3.02 2.213e-02

4195.771 106.00113 1.145 4.58E-02 3.47

4195.795 106.00113 1.145 4.39E-02 3.47

4195.911 106.00112 3.294 9.97E-02 3.47

4196.208 26.0 3.40 3.556e-01

IX. MOOG Routines

21



Here are some very brief descriptions of the subroutines, intended to provide guides for
those wanting to understand the inner logic of the program, or those who might want to write
their own driver codes. The listing here is simply alphabetically arranged for ease of finding
a particular routine. The calling sequence in MOOG can be most easily traced as follows.
First look at the code for Moog.f, and find the subroutine that is called for a particular driver
that you are interested in. Go to that subroutine (which controls the action of MOOG for a
particular driver), and follow all the subroutine calls that it makes. There should be enough
comments in those subroutines, combined with the brief descriptions below, to show what a
particular driver accomplishes.

Abfind.f: This driver routine derives abundances for individual atomic lines. To access
it, the driver keyword must be “abfind”. As part of the atomic or molecular line list,
equivalent widths must be given for each line.

Abpop.f: This is an Abfind routine for stellar populations; equivalent widths are measured
in a composite (e.g. integrated light) spectrum.

Abunplot.f: This routine does the actual labor of producing the plots of derived abun-
dances versus excitation potential, reduced equivalent width, and wavelength.

Batom.f: Contains atomic data, ordered by atomic number. The sets of data are: atomic
symbols, solar abundances, atomic masses, first, second and third ionization poten-
tials, and partition functions (from Kurucz 1970, ATLAS write-up) for the first four
ionization states of elements.

Begin.f: Starts up MOOG, initializes some parameters, tries to figure out text window
lengths, and declares the properties of the plotting screen. It is mostly for internal
use, but the user might want to fool around with this routine if: (a) Screenlength.c
cannot be induced to figure out the length of a text window on a particular machine;
and (b) to make the plotting screens happier (in length, width, background color ...).
Remember that you have to specify your computer type in Moog.f .

Binary.f: This enables computation of a composite binary star spectrum. This driver
performs two raw synthetic spectra and then combines them. Thus the parameter file
must specify the model atmosphere parameters for the two stars, and their flux ratio
in the wavelength region of interest.

Binplot.f: This does the plot drawing for the binary driver.

Binplotprep.f: This routine concatenates two syntheses in order to make a smoothed
binary synthetic spectrum.

Blankstring.f: This cleans out 80-character text strings by making the characters all ascii
blanks.

Blends.f: This driver routine does abundance derivations from blended spectral features;
only one element will have its abundance derived per run. To access it, the driver
keyword must be “blends”. It is useful to determine, say, N abundances from a bunch
of CN blended features.
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Bmolec.f: Contains molecular equilibrium constant data for most common diatomic and
triatomic molecules. The source for this data is Kurucz (1970, ATLAS write-up). The
ionized atom equilibrium data was done via a least squares fit to the relevant Saha
equation data.

Boxit.f: This subroutine figures out the point numbers of the wavelength boundaries for
synthetic spectrum plots

Calmod.f: This specialized driver re-calculates BEGN τross models on a τ5000 scale. To
access it, the driver keyword must be “calmod”.

Cdcalc.f: Calculates continuum and line+continuum contribution functions. Contribu-
tion functions (see Edmonds’ article) are the integrands of the line depth integrals,
and are useful in their own right to show where in the stellar atmosphere the major
contributions to the line depths occur.

Chabund.f: This routine, which can be called after spectrum synthesis on-line plots,
changes the input abundances according to the users request and re-runs the syn-
thesis with the new abundances, OVERWRITING the original output files, but using
the same model, line list, etc.

Cog.f: This driver routine produces sets of curves-of-growth for each line of the line list.
To access it, the driver keyword must be “cog”.

Cogplot.f: This routine does the actual labor of producing the curve-of-growth plots.

Cogsyn.f: This driver routine produces a curve-of-growth of a blended feature, altering
only a specified species’ abundance. This routine is useful for understanding the in-
fluence of contaminants on a blended line. To access it, the driver keyword must be
“cogsyn”.

Correl.f: This routine cross-correlates arrays x and y using any part of the arrays, as long
as there are enough data points in each array. The result is printed out in terms of the
shift in the abscissa of the y array needed to align it with the x array.

Crosscorr.f: This routine determines the correlation of array ’x’ and array ’y’, comparing
array elements ’i’ in ’x’ with elements ’i+ishift’; the number of points in each array is
assumed to be equal.

Curve.f: This does the actual work of producing a curve-of-growth for a single line.

Damping.f: This subroutine computes damping ’gamma’ factors and then Voigt parame-
ters ’a’ .

Defcolor.f: This routine sorts out the numbering scheme for colors on plots (and sets all
colors to black on paper plots).

Discov.f: This finds the number of times a particular atom appears in a given molecule.
It is used in molecular equilibrium computation.
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Doflux: This executes the driver “doflux”, producing flux curves

Drawcurs.f: This subroutine draws an arrow and writes the user x- and y-positions of the
cursor upon a click.

Eqlib.f: Solves the equations of molecular dissociative equilibrium. The equations can
include neutral and ionized molecules and atoms.

Ewfind.f: This driver routine predicts equivalent widths for individual atomic lines. To
access it, the driver keyword must be “ewfind”.

Ewweighted.f This routine computes a weighted mean EW for one line from a set of
models (a stellar population).

Fakeline.f: This produces an internal curve-of-growth for an arbitrary ordinary atomic
line. Its purpose is to make a curve-of-growth shape that is used by the Abfind.f
routine to deduce abundances from equivalent widths.

Findtic.f: Calculates tic marks at nice round intervals; it is used by the plotting routines.

Finish.f: Simply wraps up MOOG; the user should not need to mess with it.

Fluxplot.f: This driver routine produces a plot of continuum flux versus wavelength.

Gammabark.f: This subroutine pulls in damping factors from Barklem et al. computa-
tions.

Getasci.f: Asks for information from the user, by printing out a message on the screen
that requires a user answer. That answer is then used to direct MOOG to further
action.

Getcount.f: This extracts the number of characters in an ASCII array until the first blank
is detected.

Infile.f: This [integer function] opens up disk files for reading or writing, as appropriate.

Inlines.f: Reads in the line data from a file. The data can be entered in a formatted or
unformatted manner, as the user chooses with the “freeform” parameter.

Inmodel.f: Reads in the model atmosphere data. See the input section for further details.

Invert.f: Inverts a matrix. It is used in the molecular equilibrium computations.

Jexpint.f: Computes the n’th exponential integral of variable “x”. It is used in the line
and continuum flux calculations.

Lineabund.f: This routine iteratively determines the abundance for a single line; for ease
and speed of computation the actual changes are done to gf-values, and then at the
end the adjustment is made to input abundance by the amount that the gf had to be
changed.
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Lineinfo.f: This is an output subroutine for things having to do with lines.

Linlimit.f: Marks the range of lines to be considered in a particular line calculations,
depending on the type of calculation (e.g. synthetic spectrum, single line curve-of-
growth, etc.).

Makeplot.f: This subroutine does the plot-package-specific commands to begin a plot,
then calls the specific plot drawing routine, then ends the plot.

Moog.f: The main program for MOOG. It simply causes the parameter file to be read,
and sends control to various driver subroutines.

Moogsilent.f: This is the main driver for the non-interactive version of MOOG. It reads
the parameter file and sends MOOG to various controlling subroutines. In this version
of MOOG the parameter file must be named ”batch.par” (because the code cannot
stop to ask the user to name the parameter file).

Mydriver.f: This is a dummy driver routine now. It is simply a placeholder, so that the
user can substitute a new driver routine in its place, for experimental or specialized
MOOG use.

Nansi.f: A collection of routines that allow the screen to be “painted” with characters
at certain screen positions, rather than having the screen simply scroll line-by-line. I
haven’t a clue where these routines came from, but they work. Maybe Mike Fitzpatrick
(now at NOAO) gave them to me.

Nearly.f: Calculates the line opacity at line center (≡ “kapnu0”) for each line. When
kapnu0 is multiplied by the Voigt function, one gets the line opacity at an arbitrary
wavelength. The damping parameter “a” and the Doppler factor “dopp” are also
computed.

Number.f: Decodes a character string (usually created with the “Getasci.f” command)
into a double precision floating point number.

Obshead.f: Decodes the header records of the observed FITS spectrum file.

Oneline.f: Computes the complete profile of a single isolated line.

OpacHelium.f: Calculates the He− b-f and f-f opacities.

OpacHydrogen.f: Calculates the H I b-f, H I f-f, H− b-f, and H− f-f opacities.

Opaccouls.f: These are Coulomb interaction functions used by other opacity routines.

Opacit.f: Calculates the continuous opacities at reference or individual wavelengths, and
calculates the optical depths also. The formulas have been taken from Kurucz (1970,
ATLAS write-up).

Opacmetals.f: Calculates the Mg I, Mg II, Al I, Si I, Si II, and Fe I b-f opacities.
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Opacscat.f: Calculates the opacities from scattering by H I, He I, and e−.

Params.f: Reads in the desired driver keyword, and then various other keywords to set
up the MOOG run as the user desires it. The various options are explained in another
section of this write-up.

Partfn.f: Computes partition functions using data and formulae from ATLAS9. Usually
the data in “Batomic.f” are employed, but for at least Nd and Th more recent partition
function data have been coded into this routine.

Partnew.f: Computes partition functions from newer data that have been turned into
polynomial fits with log(T).

Plotit.f: This driver routine re-plots a spectrum that already has been created in a pre-
ceding MOOG synthesis run. The raw spectrum needs to exist in a disk file.

Pltabun.f: This routine controls the plotting of abundances derived from equivalent width
matches, and user decisions associated with these plots.

Pltcog.f: This routine controls the plotting of curves-of-growth, and user decisions associ-
ated with these plots.

Pltflux.f: This routine controls the plotting of flux curves, and user decisions associated
with these plots.

Pltspec.f: This routine controls the plotting of synthetic and observed spectra, and user
decisions associated with these plots.

Pointcurs.f: This subroutine returns the cursor position upon a click.

Prinfo.f: Prints out lines of output abundance information screen, watching to ensure that
the screen does not overflow its vertical limit.

Putasci.f: This routine dumps messages to the windows in hopefully a controlled manner.

Readobs.f: Reads in an observed spectra to compare it to a synthetic spectrum. The file
format currently can be either a FITS file or an ASCII (x,y pair) style file.

Rinteg.f: This workhorse numerical integration routine is taken from Kurucz (1970, AT-
LAS write-up).

Setmols.f: This subroutine is invoked at the end of each call to *eqlib*: it transfers some
of the output number densities to arrays needed for opacities, etc.

Smooth.f: Prepares synthetic spectrum data for plotting by smoothing the data in various
ways, according to the user’s wishes. Available options for smoothing are Gaussian,
Lorentzian, rotational velocity, or combined rotation and Gaussian smoothing.

Specplot.f: This routine does the actual labor of producing the synthetic and observed
spectrum plots.
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Stats.f: Does abundance statistics for multiple lines of a single species.

Sunder.f: Breaks up the name of a molecule into its component atoms. This is useful for
molecular equilibrium, etc.

Synpop.f: A synthetic spectrum routine for whole stellar populations that operates like
the Synth.f routine. A separate spectrum is generated for each star/box; separate
abundances or isotopic ratios can therefore be assigned to individual stars/boxes.

Synspec.f: Does the actual work of calculating a single synthetic spectrum.

Synth.f: This driver routine synthesizes a section of spectrum and compares it to an
observation file. It orders the execution of “Synspec.f” and associated routines.

Tablepop.f: this routine opens the table file containing information for a stellar popula-
tion, and reads the data in that file; the information is a bit different for ”abpop” and
”synpop”.

Taukap.f: Calculates the line absorption coefficient and the line opacity at a given wave-
length for all lines in the spectrum.

Total.f: Integrates over line depths to get a total equivalent width of a feature.

Trudamp.f: Calculates explicit damping parameters for lines that have accurately known
laboratory damping parameters.

Ucalc.f: Decodes the partition function data. The source of these data is Kurucz (1970,
ATLAS write-up).

Vargauss.f: Prepares synthetic spectra for plotting, by smoothing the data with a Gaus-
sian whose FWHM has been specified by the user at various wavelengths along the
spectrum. This is a specialized routine originally designed to accommodate 4m “HY-
DRA” data.

Vmacro.f: This routine, feeding into Smooth.f, computes a radial-tangential macroturbu-
lence profile to fold into a raw computed spectrum.

Voigt.f: This function calculates the Voigt function using the approximations found in the
“New Series – Astronomy and Astrophysics” volume of Landolt-Bornstein.

Wavecalc.f: uses the wavelength coefficients of the observed spectrum file to create a
wavelength scale, using appropriate polynomial formulae.

Weedout.f: This routine goes through an initial line list and culls from it absorption lines
that are not substantial contributors. This is done in a simple fashion by eliminating
lines weaker than X, where X = kapnu/kaplam at the approximate line wavelength,
calculated at a continuue optical depth of 0.5. The user will be prompted for the
desired value of X.
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Writenumber.f: This subroutine decides on the order-of-magnitude of a number and
writes it to a character string in a reasonable format.

X. MOOG Common Blocks

Most of the information is shared between routines through FORTRAN common blocks.
These are contained in their own files, which are:

Atmos.com: Model atmosphere iformation, file numbers, flags, etc.

Dampdat.com: this common block has data relating to Barklem damping quantities.

Dummy.com: re-useable arrays for convenience in internal calculations.

Equivs.com: Not a common block, but a series of statements allowing memory locations
to be used by more than one variable.

Factor.com: Information to be used in altering elemental or isotopic data for multiple
syntheses.

Kappa.com: Continuous opacity data

Linex.com: Line information, parameters controlling synthesis or curve-of-growth repeated
calculations, etc.

Mol.com: Mostly molecular equilibrium information.

Multimod.com: this common block carries the data for population syntheses that use
multiple model calculations.

Multistar.com: This is used for storning information that will be used in combining
spectra of different stars in various ways.

Obspars.com: Parameters of observed (FITS) spectrum files.

Pstuff.com: Plotting arrays and parameters.

Quants.com: Atomic data.

To help guide the way through the MOOG codes, on the next two pages we show two of
the most important MOOG common blocks, and define some of the variables of these blocks.

Here is the common block file Atmos.f:
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real*8 t(100), theta(100), tkev(100), tlog(100),

. pgas(100), ne(100), nhtot(100), numdens(8,2,100),

. molweight(100), vturb(100), scont(100),

. kapref(100), kaplam(100), tauref(100), taulam(100),

. kaplamabs(100), kaplamsca(100),

. rho(100), rhox(100), xref(100), xdepth(100)

real*8 elem(95), xabund(95), xabu(95), u(95,4,100)

real*8 flux, fudge, wavref, abscale, deltaabund

integer ntau, jtau5, iunits, itru, iraf, modelnum

integer nfparam, nfmodel, nflines, nfslines, nfobs, nftable

integer nf1out, nf2out, nf3out, nf4out, nf5out, nf6out,

. nf7out, nf8out, nf9out, nf10out,

. nfbarklem, nfbarklemUV

integer modprintopt, linprintopt, linprintalt,

. fluxintopt, plotopt, dampingopt, specfileopt,

. linfileopt, printstrong, linecount, oldcount,

. scatopt

character*80 f1out, f2out, f3out, f4out, f5out, f6out,

. f7out, f8out, f9out, f10out,

. fparam, fmodel, flines, fslines, fobs, ftable,

. fbarklem, fbarklemUV

character*60 moogpath

character*2 names(95)

character*10 modtype

character*7 control

character*3 machine

character*1 silent

common/atmos/t, theta, tkev, tlog,

. pgas, ne, nhtot, numdens,

. molweight, vturb, scont,

. kapref, kaplam, tauref, taulam,

. kaplamabs, kaplamsca,

. rho, rhox, xref, xdepth,

. elem, xabund, xabu, u,

. flux, fudge, wavref, abscale, deltaabund,

. ntau, jtau5, iunits, itru, iraf, modelnum,

. nfparam, nfmodel, nflines, nfslines, nfobs, nftable,

. nf1out, nf2out, nf3out, nf4out, nf5out, nf6out,

. nf7out, nf8out, nf9out, nf10out,

. nfbarklem, nfbarklemUV,

. modprintopt, linprintopt, linprintalt,

. fluxintopt, plotopt, dampingopt, specfileopt,

. linfileopt, printstrong, linecount, oldcount, scatopt

common/charstuff/ f1out, f2out, f3out, f4out, f5out, f6out,

. f7out, f8out, f9out, f10out,

. fparam, fmodel, flines, fslines, fobs, ftable,

. fbarklem, fbarklemUV,

. moogpath,

. names,

. modtype,

. control,

. machine,

. silent

ntau: the number of model atmosphere layers (≤75).

t, theta, tkev, tlog: different computational forms of temperature.

pgas, ne, rho, vturb: , gas pressure, electron number density, (gas) mass density, and
microturbulent velocity of a layer.

kapref, kaplam, tauref, taulam: continuous opacities at the reference wavelength (or the
Rosseland opacity) and at the wavelength of spectrum interest, and the corresponding
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optical depths.

nhtot, scont: the fictitious total number density of hydrogen, and the continuum source
function.

numdens: the number densities of elements involved in continuous opacity calculations.

u: computed partition functions.

xabund: element abundances.

Here is the common block file Linex.com

real*8 a(2500,100), dopp(2500,100), kapnu0(2500,100)

real*8 gf(2500), wave1(2500), atom1(2500), e(2500,2),

. chi(2500,3), amass(2500), charge(2500), d0(2500),

. dampnum(2500), gf1(2500), width(2500),

. abundout(2500), widout(2500), strength(2500),

. rdmass(2500), gambark(2500), alpbark(2500),

. gamrad(2500), wid1comp(2500)

real*8 kapnu(100), taunu(100), cd(100), sline(100)

real*8 d(5000), dellam(400), w(100),

. rwtab(3000), gftab(3000), gfhold

real*8 delta, start, sstop, step, contnorm,

. oldstart, oldstop, oldstep, olddelta

real*8 rwlow, rwhigh, rwstep, wavestep, cogatom,

. delwave, wave, waveold, st1

real*8 gammatot, gammav, gammas, gammar

integer group(2500), dostrong, gfstyle, lineflag, molflag,

. lim1, lim2, mode, nlines, nstrong, ndepths, ncurve,

. lim1line, lim2line, n1marker, ntabtot,

. iabatom, iaa, ibb

character*7 damptype(2500)

common/linex/a, dopp, kapnu0,

. gf, wave1, atom1, e,

. chi, amass, charge, d0,

. dampnum, gf1, width,

. abundout, widout, strength,

. rdmass, gambark, alpbark,

. gamrad, wid1comp,

. kapnu, taunu, cd, sline,

. d, dellam, w,

. rwtab, gftab, gfhold,

. delta, start, sstop, step, contnorm,

. oldstart, oldstop, oldstep, olddelta,

. rwlow, rwhigh, rwstep, wavestep, cogatom,

. delwave, wave, waveold, st1,

. gammatot, gammav, gammas, gammar,

. group, dostrong, gfstyle, lineflag, molflag,

. lim1, lim2, mode, nlines, nstrong, ndepths, ncurve,

. lim1line, lim2line, n1marker, ntabtot,

. iabatom, iaa, ibb

common/lindamp/damptype

wave1, atom1, e, gf, c6, width: the feature wavelength, identification, excitation potential,
oscillator strength, van der Waals parameter, and equivalent width (these quantities
are read in).
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a, dopp, kapnu0, chi, amass, charge: feature damping parameter, Doppler factor, line
opacity at line center, ionization or dissociation energy, atomic or molecular mass,
species charge (these quantities are calculated).

gf1, abunout, widout: oscillator strength, abundance, equivalent width (these are output
quantities for some drivers).

kapnu, taunu, cd, sline: line opacity and optical depth, line contribution function, line
source function.
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XI. A Sample Makefile to Compile and link MOOG

This set of “make” instructions works on my MacBook Pro laptop Undoubtedly you will
need to alter the line that begins with “FC = gfortran”, as your library paths surely be
different than those set up on my machine.

# makefile for MOOG with all of the common block assignments;

# this is for my Mac laptop

# here are the object files

OBJECTS = Abfind.o Abpop.o Abunplot.o Batom.o Begin.o Binary.o \

Binplot.o Binplotprep.o Blankstring.o Blends.o Bmolec.o Boxit.o \

Calmod.o Cdcalc.o Chabund.o Cog.o Cogplot.o Cogsyn.o \

Correl.o Crosscorr.o Curve.o Damping.o Defcolor.o Discov.o \

Doflux.o Drawcurs.o Eqlib.o Ewfind.o \

Ewweighted.o Fakeline.o Findtic.o Finish.o \

Fluxplot.o Gammabark.o Getasci.o Getcount.o Getnum.o Getsyns.o \

Gridplo.o Gridsyn.o Infile.o Inlines.o Inmodel.o Invert.o \

Jexpint.o Lineinfo.o Lineabund.o Linlimit.o \

Makeplot.o Molquery.o Moog.o Mydriver.o \

Nansi.o Nearly.o Number.o Obshead.o \

Oneline.o Opaccouls.o OpacHelium.o OpacHydrogen.o \

Opacit.o Opacmetals.o Opacscat.o Params.o Partfn.o \

Partnew.o Plotit.o Plotremember.o Pltabun.o Pltcog.o \

Pltflux.o Pltspec.o Pointcurs.o Prinfo.o Putasci.o Readobs.o \

Rinteg.o Setmols.o Smooth.o Specplot.o Stats.o Sunder.o Synpop.o \

Synspec.o Synth.o Tablepop.o Taukap.o Total.o Trudamp.o Ucalc.o \

Vargauss.o Vmacro.o Voigt.o Wavecalc.o Weedout.o Writenumber.o

# here are the common files

COMMON = Atmos.com Dummy.com Equivs.com Factor.com Kappa.com Linex.com \

Mol.com Multistar.com Obspars.com Pstuff.com \

Quants.com Multimod.com Dampdat.com

FC = gfortran -std=legacy -w

# the following lines point to some needed libraries

X11LIB = /usr/X11R6/lib

SMLIB = /usr/local/lib

# here are the compilation and linking commands

all: MOOG ;

@echo -----------------------------------------------------------------

@echo

@echo make sure that you have entered the proper parameters

@echo for MOOG into the FORTRAN source driver

@echo routine Moog.f !!!!!!!!!!!!

@echo

@echo -----------------------------------------------------------------

MOOG: $(OBJECTS);

$(FC) $(OBJECTS) -o MOOG -L$(X11LIB) -lX11 \

-L$(SMLIB) -lplotsub -ldevices -lutils

#-L$(AQLIB) -laquaterm

$(OBJECTS): $(COMMON)

clean:

-rm -f *.o MOOG libMOOG.a

X. Beyond the Standard MOOG

MOOG’s only real job is to calculate a raw synthetic spectrum, defined as an array of
relative surface flux as a function of wavelength. Everything else that is done is for user
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convenience. That is, MOOG can do various things after a synthetic spectrum computa-
tion, such as smooth the spectrum in various ways, compute equivalent widths, itereatively
change input abundances to match synthetic spectra with observed ones, force-fit observed
equivalent widths, etc. It has special routines to do things like eliminate very weak predicted
lines from line lists, plot flux curves, and so forth.

However, using MOOG in its standard “interactive// mode depends on the plotting
package sm, which not everyone has. Additionally, users are completely dependent on my
preferred plotting options, which are not the best for all applications. Also, interactive
mode means that at various points MOOG will pause and wait for user instructions; this is
sometimes slow when working on large spectroscopic data sets. Finally, many users simply
would prefer for MOOG to compute the raw synthetic spectra (it is FORTRAN-based, which
remains even to this day the fastest floating-point computational software system). Users
often will like to write their own flow scripts in another language (e.g, Python) that is easier
to alter “to taste”.

Therefore, at present MOOG can be invoked as a spectrum computational slave, in its
“silent” mode. It is easily configured to do so, simply by re-compiling it with another
Makefile. For example, instead of

make -f Makefile.maclap

you would say

make -f Makefile.maclapsilent

This will ensure that the variable “silent” is set to ’y’, which will shut off any MOOG
interaction with the user. In this case, MOOG cannot ask for a parameter file name, so by
fiat the name must be

batch.par

MOOGSILENT will read this file, perform what syntheses or EW matchings are asked for
with only the information of the parfile and the names of input/output files specified in the
parfile. Any iterations will then be done with wrapper codes (any will do fine as long as they
can do system calls). These codes will make repeated calls to MOOGSILENT to “automate”
the process in ways that can be designed by the user.

A related use of MOOGSILENT is to produce syntheses or EW matches in bulk for
many stars at once. This is beyond the discussion in this document; contact Chris Sneden
for further suggestions.
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