

Early Science Results from the Cosmic Origins Spectrograph

Cynthia S. Froning University of Colorado

October 12, 2010

Early Science Results from the Cosmic Origins Spectrograph

Cynthia S. Froning University of Colorado

October 12, 2010

COS Science Themes

What is the <u>large-scale structure</u> of matter in the Universe?

How did <u>galaxies</u> form out of the intergalactic medium?

How were the <u>chemical elements</u> for life created in massive stars and supernovae?

How do <u>stars and planetary</u> <u>systems</u> form from dust grains in molecular clouds in the Milky Way?

What are <u>planetary atmospheres</u> <u>and comets</u> in our Solar System (and beyond) made of?

"Spectroscopy lies at the heart of astrophysical inference."

COS will observe a rich variety of targets from our solar system to the high(ish)-redshift universe.

Cycle 17/18 Observations

- ~25% of prime GO orbits in each cycle
- Four large programs (43 galaxy halos, 44 dwarf galaxy halos, 9 WHIM sightlines, 26 T Tauri stars)
- 555 GTO orbits (not all will be executed by the end of Cycle 18)
- Solar system & exoplanet atmospheres, WD debris disks, starbursts, stellar atmospheres and disks, ISM abundances, AGN & galaxy feedback, IGM and Galactic halo mapping, HeII G-P, etc.

The Intergalactic Medium in the Modern Universe

Outstanding Questions in Modern Cosmology

- Missing baryons in the local universe
- Large scale structure
- Galaxy formation and evolution
- Feedback: galaxy-IGM interactions

<u>PKS0405</u> • 10-30x more sensitive than STIS; up to

100x more efficient for faint targets

The Power of COS for IGM Studies

- ⇒Survey capabilities
- ⇒Spatial mapping
- ⇒Metals, diffuse IGM

COS "will enable study of Lyα absorbers at overdensities comparable to that detectable at high z." (Davé et al. 2010)

To date (mid-July):

- 87 IGM sightlines observed, 300+ hrs (GO, GTO, ERO)
- Total Ly α pathlength $\Delta z = 22.93$
- COS has already 10x the pathlength and 15x the number of absorbers of previous GHRS+STIS studies!

<u>1ES 1553+113</u>

- BL Lac object, no emission lines, redshift unknown
- $F_{\lambda} \approx 1.5e-14 \text{ ergs/cm}^2/\text{s/Å}; \text{ S/N} = 20 \text{ in}$ 5 orbits
- Ly α +OVI absorber at $z=0.395 \Rightarrow z_{AGN} \ge 0.4$
 - ⇒ great X-ray target for OVII, OVIII searches
- 41 intervening Lα systems; 13 higher Ly lines; 6 metal-ion systems
- New triple $Ly\alpha$ + metal ion system at z=0.188
- Δv≈1200 km/s, nearby massive galaxies; plausible large-scale cosmic filament

Danforth et al. 2010, ApJ, 720, 976

<u>1ES 1553+113</u>

- Detections in HI, OVI, NV, CIII (but not SiIII/IV: density, temperature, metallicity constraints, ionization fraction
 - ⇒ Multiphase gas (OVI and NV from WHIM, HI and CIII from cooler, photoionized gas)
 - ⇒ Model fits: cooler, lower ionization fraction, higher metallicity

Yao et al. 2010, submitted

- Slow reionization to z \leq 2.7; variations in HeII/HI τ over 4–10 Mpc comoving scales
- Shull et al. 2010, ApJ, accepted
- Upcoming: 5 targets, 17 target snapshot
- See C. Danforth presentation

- He II Gunn-Peterson targets
- HE 2347-4342, z=2.885
- Compare to HI Lyα forest to constrain UV/X radiation field, ionizing sources; track into HI "voids"

Transiting Exoplanet Wasp-12

- Hottest transiting exoplanet, closest to parent star: 1.5 M_J; 1 day P_{orb}
- GO program (PI: Haswell): test "blow-off" hypothesis using NUV spectroscopy
- Transit in MgII, Mn I, Sc II, etc. deeper than in continuum-dominated region
- Inferred radii ≈2.6 M_J, larger than planetary Roche lobe ⇒ exosphere
- Early ingress in metals could be disk around planet, consistent with model predictions of tidal stripping in Wasp-12 (Li et al. 2010)

Fossati et al. 2010, ApJL, 714, L222

- FUV spectroscopy of transit, behind star, quadrature positions
- Transit detection (~8%) in CII, Si III
- Velocity-resolved transit seen from -50 to 50 km/s with probable substructure
- Mass loss rate 8x10¹⁰ g/s (thermal absorption only)
- Non-detection of auroral H₂ from the planet constrains H column density between star and planet; weak planetary magnetic field
- See Linsky presentation

Linsky et al. 2010, ApJ, 717, 1291 France et al. 2010, ApJ, 712, 1277

Cosmic Origins Spectrograph Hubble Space Telescope

Hubble Space Telescope

Cosmic Origins Spectrograph

- FUV spectroscopy of transit, behind star
- Transit det Si III
- Velocity-re from -50 to probable st
- Mass loss r (thermal ab
- Non-detect from the pl column der planet; wea field
- See Linsky presentation

Linsky et al. 2010, ApJ, 717, 1291 France et al. 2010, ApJ, 712, 1277

of Extrasolar Planet HD 209458b

Protoplanetary Disk Spectra

- RECX-11: Significant CO band emission contribution to "continuum" in planet-forming region; not just e^{-} impact H₂ or hot accretion column
- Brown dwarf accretor 2M1207: Low mass analog to T Tauri stars; resolved H_2 line profile gives location of emission at dust sublimation radius/inner edge of the accretion disk
- Continuum FUV radiation field increases inner disk illumination (from M2 to "effective" A), affecting molecular chemistry in the protoplanetary disk at the epoch when planet formation is occurring

See France poster, Herczeg talk (Friday)

Translucent Clouds

- Observations of sightlines in the cold ISM
- Goal: first UV spectra of true translucent clouds, chemistry and physical conditions
- Study atomic to molecular hydrogen ratios, depletions, and molecular abundances in diffuse vs. translucent clouds
- Cyg OB2 8a: highest HI column density observed so far (21.95)
- HD204827 spectroscopic binary: use to search for neutral PAHs
- Snow et al. 2010, ApJL, 720, L190

	Cyg OB2 8a	HD 204827	Translucent Clouds (Burgh et al. 2010)
CO/H ₂	8.6 x 10 ⁻⁷	1.4 x 10 ⁻⁵	> 10 ⁻⁶
CO/C I	0.02-1.5	0.2	> 1.0
f _{H2}	0.17	0.67	> 0.4
N _{CN}	12.36	13.74	-

For More Information

- See talks this week by Green, Tumlinson, Lehner, Thom, Stocke, Heap, Aloisi
- Posters by Barstow, Beasley, Beland, Burgh, Danforth, France, Kriss, Lennon, Linsky, Osterman, Penton, Snow, Wofford, etc.
- Attend the Friday splinter session: invited talks by Tripp, Herczeg, science presentations, discussion of on-orbit performance, calibration, etc.